Designing Eight-port Antenna Array for Multi-Band MIMO Applications in 5G Smartphones

Authors

DOI:

https://doi.org/10.26636/jtit.2023.4.1297

Keywords:

5G communication, compact MIMO antenna, decoupling techniques, fractal geometry, multi-band antenna

Abstract

This article introduces a dual-functional low-profile compact multiple input multiple output (MIMO) antenna array for multi-band communication in 5G smartphones. The proposed eight elements of the antenna array form two different 4×4 MIMO systems. The first four elements are placed at the four mobile corners and operate in a single band of 3.445-3.885 GHz for 5G n77 and n78 applications. The other system, in which four antennas are positioned in the middle of the terminal board, supports two wide bands of 1.684-2.300 GHz and 4.432-5.638 for n2, n3, n39, n65, n66, n79, and WLAN applications. The second iteration of a modified Peano-type fractal geometry served as the design foundation for the proposed antenna element. The system's ground plane design is based on self-isolated and spatial diversity methods. The single-band MIMO system's isolation is better than 23 dB. In the dual-band MIMO system that is based on self-isolation, isolation equals approximately 16 dB in the higher band and 10 dB in the lower band. To evaluate performance, radiation-related and total antenna efficiencies, scattering parameters and gains were investigated. Additionally, ECCs have been considered to evaluate MIMO performance. According to the results, such design constitutes a valuable option for MIMO applications in 5G smartphones.

Downloads

Download data is not yet available.

References

N.O. Parchin et al., "An Efficient Antenna System with Improved Radiation for Multi-standardMulti-mode 5G Cellular Communications", Scientific Reports, vol. 13, art. no. 4179, 2023. DOI: https://doi.org/10.1038/s41598-023-31407-z
View in Google Scholar

H. Zou et al., "Dual-functional MIMO Antenna Array with High Isolation for 5GWLAN Applications in Smartphones", IEEE Access, vol. 7, pp. 167470-167480, 2019,. DOI: https://doi.org/10.1109/ACCESS.2019.2953311
View in Google Scholar

W.M. Abdulkawi, M.A. Alqaisei, A.F.A. Sheta, and I. Elshafiey, "New Compact Antenna Array for MIMO Internet of Things Applications", Micromachines, vol. 13, no. 9, 2022. DOI: https://doi.org/10.3390/mi13091481
View in Google Scholar

M.Y. Muhsin, A.J. Salim, and J.K. Ali, "Compact MIMO Antenna Designs Based on Hybrid Fractal Geometry for 5G Smartphone Applications", Progress in Electromagnetics Research C, vol. 118, pp. 247-262, 2022. DOI: https://doi.org/10.2528/PIERC22012808
View in Google Scholar

S.H. Kiani et al., "Multiple Elements MIMO Antenna System with Broadband Operation for 5th Generation Smart Phones", IEEE Access, vol. 10, pp. 38446-38457, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3165049
View in Google Scholar

J. Cai, J. Zhang, S. Xi, J. Huang, and G. Liu, "A Wideband Eight-element Antenna with High Isolation for 5G New-Radio Applications", Applied Sciences, vol. 13, art. no. 137, 2022. DOI: https://doi.org/10.3390/app13010137
View in Google Scholar

R.M. Asif, A. Aziz, M.N. Akhtar, M. Amjad, and M.A. Khan, "Synthesis and Characterization of Tb Doped Ni-Zn nano Ferrites as Substrate Material for Dual-band MIMO Antenna", Physica B: Condensed Matter, vol. 653, art. no. 414658, 2023. DOI: https://doi.org/10.1016/j.physb.2023.414658
View in Google Scholar

H. Xu, H. Zhou, S. Gao, H. Wang, and Y. Cheng, "Multimode Decoupling Technique with Independent Tuning Characteristic for Mobile Terminals", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6739-6751, 2017. DOI: https://doi.org/10.1109/TAP.2017.2754445
View in Google Scholar

W. Jiang, B. Liu, Y. Cui, and W. Hu, "High-isolation Eight-element MIMO Array for 5G Smartphone Applications", IEEE Access, vol. 7, pp. 34104-34112, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2904647
View in Google Scholar

M.Y. Muhsin, A.J. Salim, and J.K. Ali, "Compact Self-isolated MIMO Antenna System for 5G Mobile Terminals", Computer Systems Science and Engineering, vol. 42, no. 3, pp. 919-934, 2022. DOI: https://doi.org/10.32604/csse.2022.023102
View in Google Scholar

A. Zhao and Z. Ren, "Multiple‐input and Multiple‐output Antenna System with Self‐isolated Antenna Element for Fifth‐generation Mobile Terminals", Microwave and Optical Technology Letters, vol. 61, no. 1, pp. 20-27, 2019. DOI: https://doi.org/10.1002/mop.31515
View in Google Scholar

A.J. Salim and J.K. Ali, "Design of Internal Dual Band Printed Monopole Antenna Based on Peano-type Fractal Geometry for WLAN USB Dongle", PIERS Proceedings, pp. 1268-1272, 2011 (https://www.piers.org/pierspublications/PIERS2011SuzhouProceedings04.pdf).
View in Google Scholar

M.Y. Muhsin, A.J. Salim, and J.K. Ali, "An Eight-element MIMO Antenna System for 5G Mobile Handsets", in: 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, UAE, 2021. DOI: https://doi.org/10.1109/ISNCC52172.2021.9615663
View in Google Scholar

A.K. Sidhu and J.S. Sivia, "Design of a Novel 5G MIMO Antenna with its DGP Optimization Using PSOGSA", International Journal of Electronics, 2022. DOI: https://doi.org/10.1080/00207217.2022.2148288
View in Google Scholar

M.Y. Muhsin, A.J. Salim, and J.K. Ali, "An Eight-element Multi-band MIMO Antenna System for 5G Mobile Terminals", AIP Conference Proceedings, vol. 2651, no. 1, 2023. DOI: https://doi.org/10.1063/5.0105773
View in Google Scholar

S. Chouhan, D.K. Panda, M. Gupta, and S. Singhal, "Multiport MIMO Antennas with Mutual Coupling Reduction Techniques for Modern Wireless Transreceive Operations: A Review", International Journal of RF and Microwave Computer‐Aided Engineering, vol. 28, no. 2, art. no. e21189, 2018. DOI: https://doi.org/10.1002/mmce.21189
View in Google Scholar

A.A. Glazunov, A.F. Molisch, and F. Tufvesson, "Mean Effective Gain of Antennas in a Wireless Channel", IET Microwaves, Antennas & Propagation, vol. 3, no. 2, pp. 214-227, 2009. DOI: https://doi.org/10.1049/iet-map:20080041
View in Google Scholar

T. Taga, "Analysis for Mean Effective Gain of Mobile Antennas in Land Mobile Radio Environments", IEEE Transactions on Vehicular Technology, vol. 39, no. 2, pp. 117-131, 1990. DOI: https://doi.org/10.1109/25.54228
View in Google Scholar

M. Abdullah, S.H. Kiani, and A. Iqbal, "Eight Element Multiple-input Multiple-output (MIMO) Antenna for 5G Mobile Applications", IEEE Access, vol. 7, pp. 134488-134495, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2941908
View in Google Scholar

L. Malviya, R.K. Panigrahi, and M.V. Kartikeyan, "MIMO Antennas with Diversity and Mutual Coupling Reduction Techniques: a Review", International Journal of Microwave and Wireless Technologies, vol. 9, no. 8, 1763-1780, 2017. DOI: https://doi.org/10.1017/S1759078717000538
View in Google Scholar

M.S. Sharawi, "Printed Multi-band MIMO Antenna Systems and their Performance Metrics", IEEE Antennas and Propagation Magazine, vol. 55, no. 5, pp. 218-232, 2013. DOI: https://doi.org/10.1109/MAP.2013.6735522
View in Google Scholar

D. Huang, Z. Du, and Y. Wang, "Slot Antenna Array for Fifth Generation Metal Frame Mobile Phone Applications", International Journal of RF and Microwave Computer‐Aided Engineering, vol. 29, no. 9, art. no. e21841, 2019. DOI: https://doi.org/10.1002/mmce.21841
View in Google Scholar

M.A. Jamshed et al., "Dual Band and Dual Diversity Four-element MIMO Dipole for 5G Handsets", Sensors, vol. 21, no. 3, art. no. 767, 2021. DOI: https://doi.org/10.3390/s21030767
View in Google Scholar

Z. Qin, G. Wen, M. Zhang, and J. Wang, "Printed Eight‐element MIMO System for Compact and Thin 5G Mobile Handest", Electronics Letters, vol. 52, no. 6, pp. 416-418, 2016. DOI: https://doi.org/10.1049/el.2015.3960
View in Google Scholar

L. Sun, H. Feng, Y. Li, and Z. Zhang, "Tightly Arranged Orthogonal Mode Antenna for 5G MIMO Mobile Terminal", Microwave and Optical Technology Letters, vol. 60, no. 7, pp. 1751-1756, 2018. DOI: https://doi.org/10.1002/mop.31240
View in Google Scholar

L. Guo, Z. Liu, H. Liu, D. Huang, and Z. Du, "Wideband Eight‐element Antenna for 5G Metal Frame Mobile Phone Applications", International Journal of RF and Microwave Computer‐Aided Engineering, vol. 30, no. 12, art. no. e22442, 2020. DOI: https://doi.org/10.1002/mmce.22442
View in Google Scholar

Downloads

Published

2023-10-31

Issue

Section

ARTICLES FROM THIS ISSUE

How to Cite

[1]
Z. Faydhe Al-Azzawi, R. . K. AbdulSattar, M. Muhsin, M. Abdulrazzaq, A. Salim, and J. K. Ali, “Designing Eight-port Antenna Array for Multi-Band MIMO Applications in 5G Smartphones”, JTIT, vol. 94, no. 4, pp. 18–24, Oct. 2023, doi: 10.26636/jtit.2023.4.1297.