Exact Analysis of MIMO Channel Estimation Based on Superimposed Training
DOI:
https://doi.org/10.26636/jtit.2024.2.1557Keywords:
channel estimation, DC offset, MIMO channel, superimposed training, ZCZ sequencesAbstract
In this paper, channel estimation capabilities of a multiple-input multiple-output (MIMO) system using superimposed training sequences are investigated. A new expression for estimation-error variance is derived. It is shown that the training sequences must be balanced and must have specific correlation properties. The latter are required only in a specific zone. Sequences that satisfy these criteria exist and are referred to as zero-correlation zone (ZCZ) solutions. Consequently, by using balanced ZCZ sequences, harmful direct current (DC) offset can be removed. Owing to their zero-cross correlation, interference from other transmitting antennas may be eliminated. Furthermore, a closed-form expression of the estimation-error variance can be obtained due to their impulse-like autocorrelation. To increase the number of antennas in the MIMO system, a new construction of ZCZ sequence set is proposed, in which all sequences are balanced
Downloads
References
S. Gong et al.,"Robust Superimposed Training Optimization for UAV Assisted Communication Systems", IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 1704-1721, 2020.
View in Google Scholar
Y. Zhang et al., "Wireless-Powered Cell-Free Massive MIMO with Superimposed Pilot Transmission", IEEE Communications Letters, vol. 26, no. 7, pp. 1688-1692, 2022.
View in Google Scholar
N. Garg, H. Ge, and T. Ratnarajah, "Generalized Superimposed Training Scheme in IRS-assisted Cell-free Massive MIMO Systems", IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 1157-1171, 2022.
View in Google Scholar
H. Zhang and B. Sheng, "An Enhanced Partial-Data Superimposed Training Scheme for OFDM Systems", IEEE Communications Letters, vol. 24, no. 8, pp. 1804-1807, 2020.
View in Google Scholar
K. Chen-Hu, M.J. Fernández-Getino García, A.M. Tonello, and A.G. Armada, "Pilot Pouring in Superimposed Training for Channel Estimation in CB-FMT", IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3366-3380, 2021.
View in Google Scholar
X. Xie, M. Peng, F. Gao, and W. Wang, "Superimposed Training Based Channel Estimation for Uplink Multiple Access Relay Networks", IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4439-4453, 2015.
View in Google Scholar
S. He, J.K. Tugnait, and X. Meng, "On Superimposed Training for MIMO Channel Estimation and Symbol Detection", IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 3007-3021, 2007.
View in Google Scholar
E. Alameda-Hernandez et al., "Frame/Training Sequence Synchronization and DC-Offset Removal for (Data-Dependent) Superimposed Training Based Channel Estimation", IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2557-2569, 2007.
View in Google Scholar
A.G. Orozco-Lugo, M.M. Lara, and D.C. McLernon, "Channel Estimation Using Implicit Training", IEEE Transactions on Signal Processing, vol. 52, no. 1, pp. 240-254, 2004.
View in Google Scholar
W. Yuan and P. Fan, "Implicit MIMO Channel Estimation wWithout DC-Offset Based on ZCZ Training Sequences", IEEE Signal Processing Letters, vol. 13, no. 9, pp. 521-524, 2006.
View in Google Scholar
M. Addad, A. Djebbari and I. Dayoub, "Performance of ZCZ Codes in QS-DS-CDMA Communication Systems", Signal Processing, vol. 164, pp. 146-150, 2019.
View in Google Scholar
M. Addad and A. Djebbari, "Adequate Spreading Codes to Reduce MAI in Quasi-synchronous MC-DS-CDMA System", IET Communications, vol. 14, no. 12, pp. 1992-1996, 2020.
View in Google Scholar
P.Z. Fan, N. Suehiro, N. Kuroyanagi, and X.M. Deng, "Class of Binary Sequences with Zero Correlation Zone", Electronics Letters, vol. 35, no. 10, p. 777-779, 1999.
View in Google Scholar
T. Maeda, S. Kanemoto, and T. Hayashi, "A Novel Class of Binary Zero-correlation Zone Sequence Sets", TENCON 2010-2010 IEEE Region 10 Conference, Fukuoka, Japan, 2010.
View in Google Scholar
J.S. Cha et al., "New Binary Sequences with Zero-correlation Duration for Approximately Synchronized CDMA", Electronics Letters, vol. 36, no. 11, pp. 991-993, 2000.
View in Google Scholar
M. Addad and A. Djebbari, "Simultaneous Multiple Cable Fault Locating Using Zero Correlation Zone Codes", IEEE Sensors Journal, vol. 21, no. 2, pp. 907-913, 2021.
View in Google Scholar
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mouad Addad, Hanane Meriem Toaba, Ali Djebbari

This work is licensed under a Creative Commons Attribution 4.0 International License.