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Abstract  Excitation coefficients with a low dynamic range
ratio (DRR) are advantageous in controlling mutual coupling
between the elements of an antenna array. Their use also reduces
the output power loss and simplifies the design of the feeding
network. In this paper, a hybrid algorithm based on invasive
weed optimization and convex optimization for the synthesis
of distributed arrays with two subarrays is proposed. Arrays
of this type are used in numerous applications, e.g. in aircraft.
A constraint is added to the optimization problem to control
the DRR of the array’s excitation vector. Numerical results are
presented for position-only, as well as for position and excitation
control approaches. The trade-off between the peak sidelobe
ratio and the obtained DRR is illustrated by numerical examples.

Keywords  convex optimization, distributed antenna arrays,
dynamic range ratio, invasive weed optimization

1. Introduction

A distributed phased array (DPA) is composed of multiple
small-scale arrays, which increases the array’s arrangement
flexibility and expands the its aperture. DPA with a large
aperture offers highly favorable characteristics, such as high
directivity and narrow mainlobe width. Due to these fea-
tures, DPA finds use in many applications in communication
systems relying on special layout platforms [1], [2], and in
other applications which cater to the high demand for good
directivity and great precision with increased degrees of free-
dom [3], [4].
A DPA is ordinarily a sparse array with nodes that can be
placed on independent platforms tens of wavelengths apart.
This leads to the appearance of grating lobes in the array’s
pattern. It is essential in many applications to suppress these
grating lobes to avoid problems such as interference from
undesired locations.
Many synthesis techniques have been proposed to suppress
grating lobes in DPAs [5]–[7]. The synthesis process depends
on numerous parameters, including position, excitation, and
the number of array elements. Many array pattern synthe-
sis techniques employ global optimization techniques, such
as genetic [8], invasive weed optimization (IWO) [9], differ-
ential evolution [10], and particle swarm optimization [11]
algorithms. Convex optimization has also been widely used to
synthesize antenna arrays [12]. Compressive sensing-based

approaches have been utilized in [13]–[15] for this purpose
as well.
Dynamic range ratio (DRR) is defined as the ratio of the array
elements’ amplitudes at maximum and minimum values.
The DRR of the excitation coefficients is usually high in
the synthesized arrays with a low sidelobe level (SLL) [16],
[17]. High DRR is undesirable, since it complicates the
feeding network and increases its cost. Furthermore, low
DRR results in better control of the mutual coupling between
antenna elements. Many analytical methods based on popular
windows and polynomials, for example Gaussian [18] and
ultraspherical windows [19], are used to synthesize array
patterns with low DRR. Optimization-based methods, which
include the need for low DRR as a design objective, are also
used to synthesize arrays with low DRR of the excitations
[20], [21].
In [22], a hybrid algorithm for synthesizing a distributed array
consisting of two subarrays using differential evolution and
convex optimization was proposed. In this proposed method,
the differential evolution algorithm is used to find the element
positions and the iterative reweighted ℓ1-norm minimization
algorithm is employed to find the optimum weights for a given
set of element positions. Unfortunately, the use of iterative
reweighted ℓ1-norm minimization is not necessary, as it is
usually relied upon to enhance the sparsity in solutions for
optimization problems which use ℓ1-norm instead of ℓ0 quasi-
norm to minimize the number of non-zero elements in the
excitation vector [23]. It is not used to further lower the peak
sidelobe level (PSLL), as mentioned in [22].
In the case of the work described in [22], the optimization
problem for a given position vector which is obtained using
the differential evolution algorithm is convex, and there is no
need for any relaxation. Furthermore, the results reported in
the paper, i.e. those shown in Tab. 1 in [22], did not satisfy the
constraint on the distance between the two subarrays, which
should be 30λ instead of the reported 18λ. The work also did
not consider the DRR of the excitations of the synthesized
array.
In this paper, an algorithm based on IWO and convex opti-
mization is proposed to synthesize distributed arrays consist-
ing of two subarrays, with DRR taken into consideration as
well. In the proposed algorithm, IWO is used to find the op-
timum positions of the array’s elements under a constraint
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on the distance between the two subarrays and a minimum
allowed distance between 2 adjacent array elements.
Convex optimization is used to find the optimum excitation
vector for a given set of element positions, which minimizes
PSLL, with a constraint aimed at minimizing DRR of the
excitations. PSLL of the synthesized array is used as the
fitness function for the IWO algorithm. To the best of the
author’s knowledge, this is the first paper focusing on the
synthesis of distributed antenna arrays with constraints on the
distance between the sub-arrays and the inter-element spacing
between the elements in each sub-array, with dynamic range
ratio considerations accounted for as well.
The remainder of the paper is organized as follows. Section 2
formulates the problem. The proposed algorithm is detailed
in Section 3. Numerical examples are given in Section 4, and
conclusions are drawn in Section 5.

2. Synthesis Problem Formulation

Consider a linear array made up of two identical sub-arrays
which consist of 2×M isotropic radiating elements, with the
distance between the sub-arrays equaling D0. The distance
between the individual elements in the same subarray is d0.
The location of the n-th array element xn can be expressed
as:

xn =

{
−(N − n) d0 − D02 , 1 ¬ m ¬M
D0
2 + (n−N − 1) d0, N + 1 ¬ n ¬ 2N

. (1)

The distance between two elements on the left-hand side of
each subarray equals:

xN+1 − x1 = D0 + (N − 1) d0 . (2)

The array’s far field pattern can be written as:

AF (θ) =
2N∑
n=1

wn e
−jkxn sin θ , (3)

where wn is the excitation of the n-th element, k = 2π
λ is

the wave number, λ is the wavelength, and θ is the elevation
angle. Equation (3) can be written in a matrix form as:

AF (θ) = A(θ)Tw , (4)

where T is the transpose operator,

A(θ) =
[
e−jkx1 sin θ, e−jkx2 sin θ, . . . , e−jkx2N sin θ

]T
and

w = [w1, w2, . . . , w2N ]
T .

The objective here is to find element locations and excitations
that minimize the peak sidelobe level (PSLL), subject to
constraints on the number of elements, minimum element
separation, and a fixed distance between the two sub-arrays.

Mathematically, the optimization problem can be expressed
as:

find x = [x1, . . . , x2N ]T and w = [w1, . . . , w2N ]T

min {PSLL(x,w),DRR(w)}
subject to xi+1 − xi ­ dc > 0

i ∈ Z, 1 ¬ i ¬ 2N − 1, i ̸= N
xN+1 − xN ­ D0 > 0
x0 = 0

, (5)

where dc is the minimum allowable distance between elements
in each sub-array and the PSLL is defined as:

PSLL(x,w) = max

∣∣∣∣∣∣∣∣∣∣

2N∑
n=1

wn e
−jkxn sin(θsl)

AF (θ0)

∣∣∣∣∣∣∣∣∣∣
, (6)

where θ0 is the direction of the mainlobe, θsl is the sidelobe
angles outside of the mainlobe region, and | · | is the absolute
value.
The DRR is defined as:

DRR =
max{|wk |}
min{|wk |}

, k = 1, 2, . . . , 2N , (7)

which represents the ratio of maximum and minimum values
for the amplitudes of the array’s elements.

3. The Proposed Hybrid Method

Hybrid IWO and convex optimization algorithms are used
to solve the optimization problem in Eq. (5). The proposed
algorithm is summarized below.

3.1. Element Position Initialization

The individual here is taken as the position vector
x = [x1, . . . , x2N ]T . For the sake of satisfying the con-
straints on the minimum spacing between the elements in
each subarray d0 and the space between the two subarrays
D0, the position vector is expressed as follows:

x =



x1

x2

x3
...

xN

xN+1

xN+2
...

x2N



=



0

a1

a2
...

aN−1

aN

aN+1
...

a2N−1



+



0

d0

2 d0
...

(N − 1) d0
(N − 1) d0 +D0
Nd0 +D0

...

(2N − 2) d0 +D0



(8)

The vector a = [a1, . . . , a2N−1]T consists of 2N − 1 real
random numbers in the range of [0,Vmax], and elements of a
are ordered in ascending order, i.e. a1 ¬ a2 ¬ . . . ¬ a2N−1.
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The position vector x can be determined after generating a.
Here a is considered the seed for the IWO algorithm. By
producing aM times independently, a starting population
ofM seeds is initialized. Consequently, a set ofM position
vectors are initialized.

3.2. Fitness Function

Provided that the positions of the array elements are deter-
mined by the IWO algorithm, the optimization problem in
Eq. (5) is a convex optimization problem which can be solved
efficiently using off-the-shelf packages, such as CVX [24].
In such a case, the optimization problem can be expressed
mathematically as:

min
w,τs
τs (9a)

subject to Re
{
A(θ0)Tw

}
= τm (9b)∣∣A(θsl)Tw

∣∣ ¬ τs (9c)
∥w∥ ¬ τd (9d)

where Re{·} is the real part.
Without normalization, τm is the directivity of original dis-
tributed array and τs is a slack variable which represents an
upper bound on the response of the array in the sidelobe re-
gion. ∥ · ∥ is the ℓ2-norm, which is the square root of the sum
of the squared values of the vector elements. τd represents an
upper on the ℓ2-norm of the excitation vector w.
Unlike the ℓ1-norm, the ℓ2-norm does not promote sparsity
in solutions. Instead, it distributes the penalty across all
coefficients, resulting in more evenly distributed values. This
leads to a reduction in the ratio between the largest and
smallest values that element excitations can assume, which
results in a decrease in the DRR.
The resulting PSLL of the array is considered to be the fitness
value of the correspondent seed in the population. Every
initial seed grows into a weed after calculating its fitness.

3.3. Reproduction

The reproductive capability of weeds depends on their fitness
values. A linear relationship exists between the number of
seeds reproduced from every weed and its fitness value, i.e.
PSLL associated with the weed. Here, the weeds with lower
fitness values have a larger probability of being preserved in
the population and, hence, produce more seeds. The number
of seeds produced by them-th weed can be expressed as:

sm =
Smax − Smin

fmax − fmin
(fmax − fm) + Smin , (10)

where fmax and fmin are the maximum and minimum fitness
values, i.e. PSLLs, in the current population, respectively.
Smax and Smin are the maximum and minimum allowable
seeds, respectively. fm is the fitness value of them-th weed.

3.4. Spatial Dispersal

New seeds are then dispreaded in a random manner over the
searching space. Gaussian distribution is used with mean µ
equal to the location of the parent weed. During the iterations,

Tab. 1. List of element positions for N = 25 element array with
position-only control.

n Pos. (λ) n Pos. (λ) n Pos. (λ) n Pos. (λ)

1 0 14 12.3381 27 40.7146 40 49.7632
2 0.7003 15 12.9280 28 41.2152 41 50.8395
3 1.3394 16 14.3832 29 41.9873 42 52.4788
4 1.8571 17 15.4114 30 42.7831 43 53.1647
5 3.0920 18 16.2914 31 43.3900 44 54.0020
6 3.6944 19 16.8024 32 43.9927 45 54.7090
7 4.7633 20 17.5651 33 44.5261 46 56.7148
8 5.5138 21 18.1179 34 45.0555 47 57.3373
9 6.7853 22 18.6586 35 45.5993 48 58.0154

10 7.5022 23 19.1612 36 46.1893 49 58.7423
11 8.2622 24 19.7004 37 47.1063 50 59.3086
12 9.0797 25 20.2101 38 48.4132
13 11.4735 26 40.2112 39 49.1710

the standard deviation σ is reduced from its initial maximum
value σinitial to its final minimum value σfinal. The value of σ
during iteration i can be calculated using the relation:

σ =
(imax − i)n

(im)n
(σinitial − σfinal)− σfinal , (11)

where n is a nonlinear modulation index and imax is the
maximum number of iterations.
Then the k-th seed produced by them-th weed may be written
as:

an,k = an +N (0, σ) . (12)

Following that, the elements of each seed a are limited in
the range of [0,Vmax] and thus ordered in an increasing order
a1 ¬ a2 ¬ . . . ¬ a2N−1.
Equation (8) is thus used to calculate the corresponding
position vector, and next (9) is used to find the optimum
excitation vector which minimizes the PSLL of the distributed
array pattern.

3.5. Competitive Exclusion

The weeds are grown from the seeds and ranked together
with parent weeds based on their PSLL fitness value. As
the number of weeds increases, there must be some sort of
competition between them to limit their maximum number
in the colony. When the maximum number of weeds pmax
is reached, weeds with poor fitness, i.e., with their PSLL
being high in comparison to that of other weeds, are removed
from the current colony. On the other hand, the weeds with
better fitness will survive and be allowed to reproduce their
next generations. The process is repeated as described in
Subsection 3.3 until the termination process criteria are met,
i.e., the number of maximum iterations imax is reached.

4. Simulation Results
4.1. Position-only Control

Consider an array of 50 elements, which consists of two
subarrays, each containing N = 25 elements. The distance
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Fig. 1. Patterns of the original uniformly spaced array vs. the array
with uniform amplitudes and optimized element positions.
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Fig. 2. Patterns of the synthesized arrays with withD0 = 20λ.

between subarrays is D0 = 20λ, and the distance between
the elements in each subarray is d0 = 0.5λ. The array with
uniform amplitudes and fixed spacing between the elements
has a PSLL of –2.17 dB for the normalized pattern. Optimiz-
ing only the positions of the array elements resulted in an
array with a PSLL of –4.79 dB for the normalized pattern.
The first null beam width (FNBW) of array pattern is 1.8°. A
list of the position of each element is given in Tab. 1.
It can be seen from the list that the distance between each
successive elements is greater than or equal to d0 = 0.5λ and
the distance between the two subarrays equals to D0 = 20λ.
Therefore, the constraints on the optimization problem are
satisfied in the synthesized array. The normalized patterns of
the uniformly spaced array and the synthesized array with
optimized element locations are depicted in Fig. 1.

4.2. Position and Excitation Control

The same array as described in Subsection 4.1 (N = 25,
d0 = 0.5λ and D0 = 20λ) is considered here. The array is

Tab. 2. List of element positions and normalized excitations for
N = 25 element array with no constraint of the weight vector w.

n
Position

(λ) wn n
Position

(λ) wn

1 0 0.0454 26 37.1519 1.0000
2 0.5338 0.0867 27 38.3303 0.1541
3 1.3945 0.0710 28 39.3940 0.2147
4 2.0561 0.0518 29 40.2403 0.0037
5 2.6577 0.0095 30 41.0885 0.0000
6 3.3152 0.0000 31 42.5882 0.1567
7 3.9472 0.0941 32 43.7477 0.1770
8 4.4813 0.0647 33 44.2883 0.0836
9 5.2003 0.0645 34 45.9830 0.0000
10 5.8500 0.0591 35 46.5271 0.0782
11 6.8806 0.0000 36 47.0757 0.1670
12 7.7895 0.1113 37 47.6219 0.0419
13 8.6952 0.1279 38 48.9694 0.0489
14 9.4475 0.1163 39 49.7959 0.0700
15 9.9618 0.0000 40 50.9733 0.1224
16 10.9504 0.0000 41 52.3476 0.0000
17 11.5424 0.0887 42 52.9467 0.0604
18 12.3939 0.1194 43 53.7691 0.0000
19 12.9026 0.0000 44 54.8033 0.0952
20 13.5500 0.0000 45 55.5401 0.0836
21 14.0602 0.0000 46 56.1475 0.1136
22 14.9208 0.0312 47 56.7744 0.0000
23 15.6179 0.0000 48 57.3970 0.0000
24 16.5354 0.3159 49 58.2532 0.0774
25 17.1519 0.4404 50 60.9913 0.4737
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Fig. 3. Patterns of the synthesized arrays withD0 = 30λ.

synthesized by optimizing both the positions and excitations of
the array elements. We start with optimizing the array using
the objective function given in (9a) under the constraints
defined Eqs. (9b) and (9c) only. That is, there is no constraint
on the the ℓ2-norm of the weight vectorw. The resultant array
has a PSLL of –9.38 dB with a DRR of 274. Table 2 contains
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Tab. 3. List of element positions and normalized excitations for
N = 25 element array with τd = 10.

n
Position

(λ) wn n
Position

(λ) wn

1 0 0.2012 26 36.4994 1.0000
2 0.8820 0.1335 27 36.9994 0.7551
3 1.4606 0.1050 28 37.5001 0.5570
4 2.0104 0.0899 29 39.2464 0.2014
5 2.5173 0.0856 30 39.8575 0.1748
6 3.4254 0.0908 31 40.3841 0.1801
7 3.9456 0.0970 32 41.4258 0.2285
8 4.4538 0.1055 33 42.1098 0.2608
9 5.1479 0.1204 34 44.2116 0.2098
10 5.8642 0.1315 35 45.0513 0.1605
11 6.9215 0.1346 36 45.6693 0.1337
12 7.4267 0.1365 37 46.2975 0.1179
13 8.3457 0.1447 38 46.8566 0.1134
14 9.3621 0.1563 39 47.4929 0.1144
15 10.3648 0.1478 40 48.0668 0.1159
16 10.9275 0.1238 41 48.8481 0.1191
17 11.4564 0.0926 42 50.5966 0.1194
18 12.0924 0.0540 43 51.3460 0.1136
19 12.8909 0.0174 44 52.6031 0.1268
20 13.5487 0.0110 45 53.5261 0.1574
21 14.4040 0.0640 46 54.2029 0.1809
22 14.9987 0.1582 47 55.5386 0.1786
23 15.4989 0.2835 48 56.0452 0.1657
24 15.9991 0.4580 49 57.9896 0.2040
25 16.4993 0.6843 50 60.5225 0.9048

a list of element positions and the corresponding normalized
weights.
Next the optimization problem in (9) is considered under all
the constraints. The value of τd is set to 10 experimentaly.
After optimizing the pattern using the proposed hybrid IWO
and convex optimization algorithm, the optimized pattern
has a PSLL of –9.10 dB and DRR = 91. The PSLL increased
by 0.28 dB (3%) and the DRR decreased by 183 (66.79%)
compared to the unconstrained ∥w∥. The trade-off is obvious
between the PSLL and the DRR and will be more obvious as
we decrease the value of τd. A list of the element position the
their normalized excitation is given in Tab. 3.
Next the algorithm is run with τd = 9. The obtained PSLL of
the normalized pattern is –8.07 dB with DRR of 11.1. This
corresponds to an increase in the PSLL of 1.31 (14%) and a
decrease in the DRR by –262.9 (96%) compared to the case
of unconstrained ∥w∥. Table 4 lists element positions and the
corresponding normalized weights.

Tab. 4. List of element positions and normalized excitations for
N = 25 element array with τd = 9.

n
Position

(λ) wn n
Position

(λ) wn

1 0 0.7657 26 41.0850 0.7198
2 0.5136 0.6078 27 41.5991 0.5804
3 1.1969 0.4334 28 42.3679 0.4144
4 2.5289 0.2078 29 43.1618 0.2939
5 3.7192 0.1142 30 44.2219 0.2020
6 4.2407 0.0971 31 44.7751 0.1786
7 4.9250 0.0902 32 45.5175 0.1657
8 7.0583 0.1243 33 46.6976 0.1701
9 7.8754 0.1425 34 47.5546 0.1794
10 8.5126 0.1553 35 48.1616 0.1848
11 9.3579 0.1694 36 48.7338 0.1875
12 9.9082 0.1769 37 49.6791 0.1863
13 11.3564 0.1896 38 50.3039 0.1817
14 12.3723 0.1920 39 50.9258 0.1748
15 13.3857 0.1890 40 51.5208 0.1666
16 14.7962 0.1812 41 52.3721 0.1530
17 15.3058 0.1807 42 53.0022 0.1423
18 16.1448 0.1893 43 53.6061 0.1319
19 16.7389 0.2072 44 54.4423 0.1184
20 17.5210 0.2531 45 55.0639 0.1104
21 18.3334 0.3374 46 55.6404 0.1060
22 19.3443 0.5083 47 56.5578 0.1101
23 20.0494 0.6770 48 57.3778 0.1328
24 20.5683 0.8282 49 58.2990 0.1918
25 21.0819 1.0000 50 58.9904 0.2677

Finally the algorithm is run for τd = 8. The obtained nor-
malized pattern has a PSLL of –6.9 dB and DRR of 5.6. This
corresponds to an increase in the PSLL by 2.48 (26.4%) and
a decrease in DRR by 268.41 (98%) compared to the case
of unconstrained ∥w∥. A list of the element positions and
their normalized excitations are given in Tab. 5. Again, the
trade-off is clear between the obtained PSLL and the resul-
tant DRR. It is also obvious that as the ∥w∥ is constrained to
has a lower value, the value of the resultant DRR improves
(decreased). The patterns of the three cases of τd (i.e. ∥w∥)
are shown in Fig. 2.

4.3. Effect of Distance Between Subarrays

In this section, the distance between the two subarrays is
increased to 30λ. It is expected that as the distance between
the subarrays increases, the grating lobe level will increase
and the FNBW will decrease. For the uniform array with
D0 = 30λ, the PSLL is –1.27 dB compared to –2.17 dB for
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Tab. 5. List of element positions and normalized excitations for
N = 25 element array with τd = 8.

n
Position

(λ) wn n
Position

(λ) wn

1 0 0.4989 26 37.9738 1.0000
2 0.5024 0.4563 27 38.5722 0.9375
3 1.1273 0.4066 28 39.2448 0.8669
4 1.6606 0.3674 29 39.8553 0.8031
5 2.3929 0.3187 30 40.5724 0.7291
6 3.0146 0.2825 31 41.2286 0.6630
7 3.7743 0.2451 32 42.5078 0.5408
8 4.3987 0.2203 33 43.1215 0.4864
9 6.0796 0.1819 34 43.8583 0.4255
10 6.8959 0.1786 35 44.5376 0.3742
11 7.4659 0.1823 36 45.2974 0.3229
12 7.9836 0.1900 37 46.1382 0.2744
13 8.5192 0.2022 38 46.9678 0.2358
14 9.0566 0.2187 39 48.6926 0.1870
15 9.7858 0.2478 40 49.3271 0.1803
16 10.3167 0.2736 41 50.0797 0.1802
17 11.0325 0.3143 42 51.9051 0.2158
18 11.7437 0.3610 43 52.9070 0.2559
19 12.8468 0.4448 44 54.1803 0.3264
20 13.3873 0.4903 45 55.0326 0.3847
21 14.4320 0.5851 46 55.8927 0.4514
22 15.6409 0.7038 47 56.5112 0.5037
23 16.2322 0.7643 48 57.6209 0.6052
24 16.8421 0.8277 49 58.4899 0.6899
25 17.8622 0.9347 50 59.1051 0.7519

the array with D0 = 20λ, and the FNBW is 1.4° compared
to 1.8° for the array with D0 = 20λ. The array is optimized
using the proposed algorithm by optimizing both the positions
and weights of the array elements for different values of τd.
For unconstrained ∥w∥, the obtained PSLL is –6.9770 and
the DRR is 270.73. For the case with τd = 10, the PSLL is
–5.8153 and DRR is 23.79. For τd = 9, the PSLL is –5.12
and DRR equals 11. Finally, for τd = 8, the PSLL equals
–4.4039 and the DRR is 5.8. Figure 3 shows the pattern of the
uniform array alongside the patterns for the different obtained
DRRs. Table 6 summarizes the obtained results. From Tab.
6, it can be seen that as the distance between the sub-arrays
increases, the performance of the array deteriorates.

5. Conclusion

An algorithm based on IWO and convex optimization was
presented. The algorithm optimizes the elements’ positions

Tab. 6. PSLL of optimized arrays with different distances between
subarrays.

Distance D0 = 20λ D0 = 30λ

Uniform –2.17 dB –1.27 dB

τ =∞
PSLL –9.38 dB –6.977 dB
DRR 274 270.7

τd = 10
PSLL –9.1 dB –5.815 dB
DRR 91 23.8

τd = 9
PSLL –8.07 dB –5.123 dB
DRR 11.1 11

τd = 8
PSLL –6.9 dB –4.404 dB
DRR 5.6 5.8

and excitations in distributed arrays with two subarrays. Nu-
merical results showed a clear trade-off between the obtained
PSLL and the value of DRR. Low DRR resulted in higher
PSLL and vice versa.
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