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Abstract  The integration of machine learning in biomedical
engineering applications is crucial to ensure user data security
and privacy. This work explores anonymization and differential
privacy (DP) frameworks to reduce the risk of biometric iden-
tification. The DP method is used to train models in biosignal
data without compromising the diagnostic results. The proposed
approach for privacy-preserving arrhythmia detection uses a
machine learning diagnostic system that reduces discrepancies
between prepossessed and raw data, maintaining a correct level
of diagnostic precision while improving privacy. The applica-
tion is evaluated using a control model to analyze the accuracy
difference when using privacy-preserving input data.
Keywords  arrhythmia detection, differential privacy, ECG data,
privacy enhancing technologies

1. Introduction

Automated diagnostic systems allow reducing the load on
health facilities and contribute to improving the quality of
medical care at home. Such systems require tracking of sev-
eral biosignals to monitor the health status of patients. It
is important to consider privacy-enhanced methods in the
diagnostic system, given that these signals, like electroen-
cephalogram (EEG) and or electrocardiogram (ECG) can
reveal the identities of patients using biometric identification
methods.
An ideal feature of an automated diagnostic system is the
ability to ensure privacy by design [1], [2], where privacy
should be built into the technology that supports the system.
Important elements to consider during the design phase are the
minimization of the user data, the controllability of personal
data, the transparency about the system operation, the control
on which authorized entities can have data access, and the
secure segregation of the data.

1.1. Privacy-enhancing Technologies

For practical engineering implementations, several privacy-
enhancing technologies (PET) are available in the literature.
Paper [3], specified three general categories: algorithmic
PETs, where a formal definition of the algorithms allow to
specify strict privacy requirements, architectural PETs, where
privacy is enhanced by the design of the underlying distributed
computation system, and augmentation PETs, where improve-

Tab. 1. Categories of privacy-enhancing technologies (PETs).

Algorithmic
PETs

Architectural
PETs

Augmentation
PETs

Differential
privacy [4]

Federated
learning [5]

Synthetic
data [6]

Zero-knowledge
proofs [7]

Multi-party
computation [8]

Digital
twinning [9]

Homomophic
encryption [10]

ment of the user privacy by the incorporation of generative
models of synthetic data and digital twinning is explored.
These categories, and relevant examples are presented in
Tab. 1. For algorithmic PETs, the most important examples
are differential privacy (DP), zero-knowledge proofs, and
homomorphic encryption.
If an external observer cannot verify that the information of
a particular user was involved in the computation, then the
algorithm is differentially-private. A similar concept con-
cerns zero-knowledge proofs, where two parties, the verifier
and the prover interact to acknowledge the possession of in-
formation. The prover goal is to acknowledge information
possession without disclosing it. Another type of algorithmic
PET is homomorphic encryption, it considers the ability of a
cryptosystem to perform computations in encrypted data. Up-
on decryption, it yields an output that is exactly the same as if
the operations had been carried out on the unencrypted data.
For architectural PETs, federated learning consist on a dis-
tributed strategy, where machine learning models are trained
locally, and only the parameters of the models are communi-
cated between the federated peers. Multi party-computation
refers to the use of private data in protected computation
tasks. All the parties can have access the computed results,
but the computation will not reveal the individual data to the
peers.
The last type of PETs, refers to augmentation. Synthetic data
is data that was created to support and test algorithms and
mathematical models, it is specially important in data science
and machine learning tasks. A specific type of augmentation is
the digital twinning, where a virtual counterpart of a physical
system is created to study the real system and to predict its
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Fig. 1. Biometric identification and re-identification using ECG signals.

response given artificial stimuli. For example, digital twins
can be customized to study the evolution of a medical therapy
and to predict future results. Anonymized twins can be used
by third party healthcare contractors in order to understand
the problem under study and to propose privacy-preserving
systems to the healthcare facilities.
This work focuses on algorithmic PETs, by the use of DP
methods in automated detection of arrhythmia.

1.2. Biometric Identification

There are two phases to the process of biometric identifica-
tion, namely the enrollment and the verification phases. The
enrollment phase is the process of registering a source of bio-
metric data jointly with its associated identification index,
with the possibility of including other diverse biometric data,
e.g. fingerprints and face image. The data stored are general-
ly processed to obtain a set of features that are characteristic
to one person, the biometric template data. The verification
phase consists of matching the template data into new data.
This phase can be challenging, because biometric data can
vary from measurement to measurement.
Biometric identification and authentication using ECG [11]–
[13] can be achieved directly or in conjunction with other
sources of biometric data. It is interesting because it can
be used as a continuous authentication method in critical
systems, for example in continuous driver authentication for
cash transport, public transportation, military, and car rental
and sharing services [14].
The working principle of biometric identification of ECG in
a diagnostic system can be seen in the Fig. 1. The enrollment
phase consist on the preprocessing of the Known ECG signal,
i.e. creating a pair (ECG signal, user ID). In order to compare
the ECG signal with another Unknown ECG signal it is
required to extract features of the signal. These features will
be stored as a template in the system database. A privacy-
preserving approach for registering the ECG features in the
database will enhance the security diagnostic service. For
example, only enrolled users will be able to be classified by
the arrhythmia detection service. In this work, we focus in
implementing a differentially-private classification model for

ECG diagnostic, guarantying that no database sample can
significantly affect the outcome of the classification.

1.3. Medical Background of Arrhythmia

Arrhythmia is a medical condition characterized by an irreg-
ular heartbeat, also classified as tachycardia or bradycardia
if the heart beats too fast or too slow, respectively. Alterna-
tively, the irregularity can display no pattern; in such cases it
is called fibrillation. Factors of increased risk of arrhythmia
include cardiovascular disease, heart surgery, and cardiomy-
opathy that implies changes in heart structure. Other causes
not related to the heart are electrolyte imbalances, medica-
tions, and certain stimulants. Personal lifestyle also plays a
role in the incidence rate of heart irregularities. High levels of
stress, smoking, and physical exertion are the most common.
Generally, arrhythmias manifest only as palpitations, light
dizziness, and shortness of breath. However, in more severe
cases it can lead to fainting and may even be life-threatening.
The diagnosis procedure involves the use of an ECG, usually
taken over a period of 24–48 h, with the help of a Holter
monitor.
Several arrhythmia detection methods [15]–[17], can be found
in the literature, where the Physionet computing in cardiology
challenge and its ECG dataset is an important benchmark for
machine learning methods [18]. More advanced data sets are
also available, for example, the 12 leads ECG data set [19].
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Fig. 2. Distribution of target classes in the dataset.
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Therefore, there are a growing collection of automated meth-
ods of arrhythmia detection and classification [20] that can
benefit greatly with the incorporation of PETs.

2. Materials and Methods

2.1. Data Sourcing and Labeling

The study from [21] proposes feature-based classifiers and
convolutional neural network (CNN) models for arrhythmia
classification using the first minute of each ECG sample.
In this work, we use a similar approach considering a CNN
model, but we generate 2D images of the ECG samples using
recurrence plots [22]. Another important difference is that
we restrict the length of input data for the CNN classifier to a
very short time period of around 2.3 s. To train and to test the
model, we use random sampling to consider any period of
2.3 s in the full length timeseries. Our model is designed for
real time detection using the buffer of 2.3 s.
The data was provided by AliveCor for the purposes of the
aforementioned challenge [18]. The total number of ECG
recordings exceeded 12 000. Each of them was taken using
single-channel ECG devices of one of three generations. The
electrodes, mostly, were placed in each hand of a patient,
resulting in lead I (LA-RA) ECG. Many of the data series
were inverted, creating (RA-LA) series. The signal recordings
average at around 30 s. The equipment then transmitted the
data to a portable device over radio waves using 19 kHz carrier
frequency and a modulation index of 200 Hz/mV. The data
was digitized in 16-bit files with a sample frequency of 300
Hz.
The experts have divided the data into 4 classes: 0 – normal
rhythm, 1 – atrial fibrillation (AF) rhythm, 2 – other (abnor-
mal) rhythm, and 3 – noisy recording. The distribution of the
classes can be seen in the Fig. 2.

2.2. System Description

In Fig. 3 the diagram of the proposed approach to preserving
the privacy of the arrhythmia detection system is presented.
This research examines a machine learning diagnostic system
in which raw ECG biosignals x undergo client-side pre-
processing to become a filtered signal u. Subsequently, this
signal is utilized by the diagnostic system g at the diagnostic
center. The goal of this system is to reduce the discrepancy
between the results of the preprocessed g and a raw data
classifier f , f(x) ≈ g(u), thus maintaining high diagnostic
precision while improving privacy. The application is tested
with the control model f that is not privacy preserving, to
compare the accuracy level of the arrhythmia detection.
The use of recurrence plots and phase space analyses have
seen use in some classification approaches [23], [24].
Out of the input data 700-samples-long snippets (2.3 s) were
randomly cropped and later transformed into image data using
the RecurrencePlot function from the pyts library [25].
The threshold and percentage values were set to “point” and
20 respectively. These parameters are used for binarization

of the recurrence plot, that consist in a 700×700 pixel image
with a single color channel. The images were resized using
bilinear. interpolation to 350×350 pixels.
This data was then shuffled and passed to the CNN model
consisting in three 2D-convolution layers for acquiring image
features and three dense layers acting as the output classifier.
The total number of trainable parameters of the CNN model
is 9 539 669.
In this application we aggregate the target classes into two:
0 – normal rhythm and 1 – atrial fibrillation (AF) rhythm
or other (abnormal) rhythm. Noisy recordings are excluded
from the dataset given that, this is a problem that needs to be
addressed early, during signal acquisition [26], [27].
The privacy levels are controlled by the parameters for ε > 0
and δ ∈ [0, 1).
The classifier g, that takes an input u and returns the output
y, is (ε, δ)-differentially-private for two similar datasets Ua
and Ub, Ua ∩ Ub ̸= ∅ if the following relation is established:

P (g(ua ∈ Ua)) ¬ exp(ε) P (g(ub ∈ Ub)) + δ . (1)

Smaller choices of the parameter ε make the model more
private, controlling the level of noise. The parameter δ refers
to the probability of a data breach. It is pertinent to set ε and
δ to achieve a trade-off between privacy and classification
performance.

3. Results
In order to compare a privacy-unaware classification model
of arrythmias with a differentially private model, we trained
a baseline model and a differentially-private model. Both
models share the same CNN architecture. The DP training of
the models was performed using the Opacus library [28]. The
models were developed using the PyTorch library for deep
learning in a GPU NVIDIA GeForce RTX 4080.

3.1. Baseline CNN Classification

The initial output of the CNN classification model, construct-
ed to explore the performance of DP models, can be seen in
the Fig. 4.
One important application of online detection and diagnostic
systems is to trigger alarms or alert the corresponding medical
services in case of an improper heart rhythm. Consequent-
ly, the most important factor to minimize is the number of
false negatives in the classification. We use the false omission
Tab. 2. Model metrics.

Metric Initial model Final model

FOR 0.3982 0.1274
Accuracy 0.7846 0.8846
Precision 0.8608 0.9029

Sensitivity 0.6018 0.8230
Specificity 0.9252 0.9328
F1 score 0.7083 0.8611
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Fig. 3. System diagram considering raw and privacy-enhanced arrhytmia detection. In the left side is presented the proposed privacy enhanced
arrhytmia diagnostic system. A compromised, raw ECG arrhytmia diagnostic system is depicted in the right side.
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Fig. 4. Confusion matrix of the baseline model.

rate (FOR), to measure the proportion of incorrect negative
clasifications, false negatives (FN) with respect to the overall
negative class:

FOR =
FN

TN+ FN
. (2)

The selected metrics for comparison of the baseline model in
the initial and final versions are presented in Tab. 2.
The metrics presented in Tab. 2 show some notable improve-
ments after optimization, including a reduction in the false
omission rate (from 0.3982 to 0.1274), an increase in sen-
sitivity (from 0.6018 to 0.8230), and an improved F1 score
(from 0.7083 to 0.8611). These improvements suggest that
the optimization efforts have enhanced the classifier’s abili-
ty to detect cardiac arrhythmias, particularly in minimizing
missed detections. Said parameter is of main concern as it
can be feasibly presumed that the potential user will already
have a history of prior medical issues with heart rhythm. That
is, a possible false alarm will not be as damaging as a missed
anomaly, given that the user will have a way of turning it off.

The remaining parameters also saw an increase, i.e. preci-
sion (from 0.8608 to 0.9029) and specificity (from 0.9252
to 0.9328), which points to the overall improvement of the
model.
The final accuracy of 88.46% is a considerable improvement
over the initial 78.46%. The model was designed to process
short ECG signals as inputs (about 2.3 s), which makes
it particularly useful in real-world scenarios where rapid
detection is critical. Furthermore, the model is currently in
its preliminary stages of development, and future iterations
are planned to incorporate greater code complexity, which is
expected to further improve performance across all metrics.

3.2. DP Implementation in the CNN

To compare the selection of privacy hyper-parameters with
respect to the performance in retraining, firstly a DP version of
CNN classifier studied in the previous subsection was trained
from scratch with weak privacy parameters until achieving
a classification accuracy of 75%. Said threshold was pre-
selected for testing the capabilities of DP implementation
in ECG classification. It can be potentially improved with
training-time optimization techniques.
Secondly, the classifier was loaded and retrained with different
choices of the privacy hyper-parameters:
• Maximum gradient norm G – corresponds to the maxi-

mum achievable norm for each gradient sample. Greater
gradients will be clipped to the value of this parameter.
With higher values of the maximum gradient norm higher
levels of privacy are achieved.
• Privacy budget Pε – cumulative value of the ε parameter

over all epochs during training. With smaller ε values,
higher levels of privacy are achieved.
• δ – the likelihood of a data breach.
For all the experiments, δ was fixed in 1.1, the values of Pε
include 12, 48, 84, and 120. The results are presented in Tab.
3 according to maximum gradient norm. Training stage con-

28
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025



Privacy-preserving Framework for Automated Detection of Arrhythmia in ECG Data

sisted of 20 epochs. The preliminary DP implementation was
able to achieve 75% accuracy. Taking that into consideration,
it can be observed that higher levels of G values substantially
affected the model performance.

4. Conclusions and Further Work

In this work, a privacy-preserving framework for the detection
of arrhytmia is presented. The framework considers a privacy
enhanced ECG acquisition on the patient’s side, useful for
remote diagnostic in homecare, and a privacy enhanced
diagnostic server that provides the automated diagnostic
service.

The ongoing work considers a validation of the results with
standard ECG biosignal databases. It is important to evaluate
the performance penalty of implementing DP, or other PETs
in standard deep learning models. One of the objectives of
this work is to promote the application of privacy-enhancing
technologies in the early stages of automated diagnostic
systems, revisiting well proven classification methods and
incorporating privacy-enhancing hyper-parameters during
design and learning phases.

Further work will consider the design of automated diagnostic
systems with the joint goal of security and privacy. In addition,
the use of a large set of sensors (e.g. temperature, pulse
oximetry, EEG, and EMG) and different target diseases for
detection can be explored as an extension of the proposed
approach.

Tab. 3. Performance after DP retraining.

G Pε
Train
loss

Train
acc.

Test
loss

Test
acc.

1.10 120 1.03 73.35 1.01 72.99
1.10 84 1.03 73.37 1.00 73.00
1.10 48 1.04 73.23 1.01 73.19
1.10 12 1.06 72.89 1.02 72.45
4.07 120 0.91 50.70 0.70 49.57
4.07 84 0.97 50.33 0.70 49.51
4.07 48 0.83 50.02 0.70 49.56
4.07 12 4.45 50.55 1.06 51.30
7.03 120 2.25 50.31 0.79 51.18
7.03 84 4.99 50.74 3.76 51.52
7.03 48 21.45 50.35 16.60 51.03
7.03 12 65.63 50.62 188.09 50.65
10.00 120 21.18 50.24 3.48 50.40
10.00 84 45.87 50.80 0.98 50.58
10.00 48 7.30 50.29 1.02 51.54
10.00 12 168.60 50.35 50.34 50.05
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