
Enhancing DGA Detection with
Machine Learning Algorithms

Hubert Biros and Mirosław Kantor

AGH University of Krakow, Kraków, Poland

https://doi.org/10.26636/jtit.2025.FITCE2024.2033

Abstract The domain generation algorithm (DGA) is a popu-
lar technique used by malware to reliably establish a connection
to a command and control (C&C) server. Pseudo-random do-
main names generated by DGA are used to bypass security
measures and allow attackers to maintain control over malware-
infected devices. In this work, we present a two-pronged ap-
proach to detecting character-based and word-based DGA do-
main names, creating classifiers specifically tailored to each type.
For character-based DGA detection, we employed seven tra-
ditional machine learning methods: support vector machine,
extremely randomized trees, logistic regression, Gaussian naive
Bayes, nearest centroid, random forests, and k-nearest neigh-
bors. We applied a featureful approach, using features extracted
from the domain names themselves. Some of these features were
drawn from existing literature, while others were newly proposed
by authors. Feature selection techniques were used to retain only
the best-performing ones. For the more complex task of detect-
ing word-based DGA domain names, we used CNN and LSTM
models, relying solely on word embeddings derived from the
domain name components. Performance evaluation shows that
proposed method gives high-performing, specialized DGA clas-
sifiers, which can be combined to create a more general-purpose
classifier.

Keywords character-based DGA, cybersecurity, DGA detection,
DNS, machine learning-based DGA detection, malware, word-
based DGA

1. Introduction

The domain name system (DNS) is a critical part of Internet
infrastructure, translating human-readable domain names into
machine-readable IP addresses. As the Internet evolves, secur-
ing the DNS against emerging threats becomes increasingly
challenging. One common threat is the abuse of DNS through
domain generation algorithms (DGAs), which malware uses
to bypass security measures.
Devices infected by the malware, such as botnets or ran-
somware, need a reliable way to establish a connection with
the command and control server (C&C) [1]–[3]. C&C plays
a key role in operating malware-infected devices, allowing
attackers to control victim machines and extract from them
sensitive and valuable data [1]. Infected devices need a way to
get the address of their C&C servers. Hard-coding the IP ad-
dresses or the domain names of these in the malware source
code, is not a good solution, since once those are found by
some security intelligence, blacklists can be created to shut
down the operation of the malware [4], [5]. Instead, some

technique must be used by malware creators in order to easi-
ly relocate the C&C server to a different location in case of
take-down of the working C&C server [3].
DGA is a popular technique used to establish a communication
channel between infected devices and C&C servers [5]. For
instance, many of the top 10 most popular financial malware
families in the year 2023 were employed with some variant
of DGA [6]. DGA is basically a piece of code that generates a
large number of pseudo-random domain names that infected
devices try to resolve to the address of the C&C server. In order
to generate different sets of domains every time period, DGA
typically uses some kind of seed in the form of a numerical
hard-coded value or some time-dependent number [7], [8].
The key idea behind DGA is that malware operators having
the same DGA algorithm and seed can register some of the
generated domains and allow infected machines to connect
with C&C server [8].
The process of using DGA is illustrated in Fig. 1, where the
hacker or person who is put in charge of the infected devices
uses the DGA algorithm implemented in the malware along
with the particular seed to generate a set of domain names
from which he selects one to register in the global DNS. In
this case, the domain name is knosszts.ru. The hacker knows
that in the future the infected device will use the same seed
and thus generate the same set of domain names. The device
will try to resolve all of them until one of them is correctly
resolved and points to the C&C server.
This paper provides new insights into the detection of DGA
domain names. Specifically, we introduce four new features
that enhance the detection of character-based DGAs. Feature
selection techniques revealed that some features used in
previous works may be unnecessary and can be omitted
without impacting performance. Additionally, our approach
of using word embeddings for detecting word-based DGAs
has shown very promising results. The strong performance of
these DGA-focused classifiers suggests that they could serve
as a solid foundation for future research and improvements in
this area.
This paper is organized as follows. Section 2 introduces
readers to the different types of DGAs and presents the
approaches used to detect the domains generated by these
algorithms. This section will additionally provide an overview
of the related papers in the field and present the state-of-the-
art solutions that were used for comparison with the results
of our work. Section 3 provides a brief introduction to the

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 31

https://doi.org/10.26636/jtit.2025.FITCE2024.2033
https://creativecommons.org/licenses/by/4.0/

Hubert Biros and Mirosław Kantor

Hacker DGAC&C server

Malware
management knosszts.ru

77.16.16.06

77.16.16.06

Registers knosszts.ru at 77.16.16.06

DNS for knosszts.ru

Malware infected device DNS

NXDOMAIN

DNS query for zhsnzkqp3b1.net.com

Commands and data

Fig. 1. Malware-infected device using DGA to generate domain names and contact C&C server.

machine learning methods that were used to create the DGA
classifiers. Sections 4 and 5 provide a detailed description of
the created models for character-based and word-based DGA
detection, respectively. The evaluation results of the obtained
DGA classifiers can be found in Section 6. The conclusions
are presented in Section 7.

2. Related Works
This section provides a comprehensive analysis of domain
generation algorithms. It offers insights into the intricacies
of DGAs, their mechanisms, and the challenges of detecting
them. Following subsections offers an overview of existing
research in DGA detection along with the various approaches
used in the field and briefly describes other works that were
used for comparison with proposed models. A full comparison
of the evaluation metrics can be found in Tab. 6.

2.1. Overview of DGA Types

We can distinguish three main categories of DGAs: character-
based DGAs, word-based DGAs (sometimes called dictionary
DGAs), and mixed DGAs, which combine elements of the first
two types [8], [9]. Though another classification scheme, as
outlined in [10], identifies four types: arithmetic-based DGAs,
hash-based DGAs, wordlist-based DGAs, and permutation-
based DGAs, we will adhere to the former classification. This
is because it groups domain names based on how they appear
to a human observer, which aligns better with the focus of
our study.
The character-based DGA domains are constructed, by con-
catenating random characters into strings and then adding
top level domain (TLD) to form the domain name. Conficker,

Necurs, or Cryptolocker are examples of malware that use
this type of DGA. Some character-based DGAs are slightly
more sophisticated, and in the process of creating the do-
main names, they distinguish between vowels and consonants
to make generated domains more pronounceable. Examples
of malware that uses this type of DGA are Pitou and Sym-
mi. Word-based DGA are more dangerous in the sense they
are more difficult to detect even by humans since they use
a pre-defined list of words in the process of generating the
domain names.
Word-based DGA can distinguish between different parts of
speech such as adjectives, nouns, or verbs in order to create
even more benign-looking domains. Examples of malware
using word-based DGA are Matsnu, Rovnix, or Suppobox.
The last category is mixed DGA which is a combination of the
two previous categories. Domains generated by mixed DGA
have one part of the domain name generated by character-
based DGA and another part is some combination of words.
An example of malware that uses this category is Banjori.
Table 1 contains examples of domains generated by different
DGA-based malware families.

2.2. DGA Detection Approaches

The methods of detecting DGA domains can be divided into
2 categories: inline and retrospective [8], [11], [12]. In the
retrospective method, collected DNS traffic can be analyzed
in order to find DGA domains. This approach is a typical
example of the intrusion detection system (IDS), since it
works on past DNS data and cannot be used to stop malware
from its operation. The latter inline approach can detect DGA
domains as soon as the DNS query is made.

32
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025

Enhancing DGA Detection with Machine Learning Algorithms

Tab. 1. Samples of different DGA domain names (C – character-
based DGA, W – word-based DGA, M – mixed DGA).

Malware
family

DGA
type Sample domain name

Banjori W uotvestnessbiophysicalohax.com
Cryptolocker C xpbfsnbuabrne.co.uk

Pitou C xoaomasat.us
Matsnu W mirrorhusbandboxconflict.com

Suppobox W weatheranother.net

The methods of detecting DGA domains can be further
divided based on the information they need to classi-
fy the domain as DGA or non-DGA. The simplest ap-
proach is to use the information contained in the domain
name string itself. While this method can effectively cre-
ate a DGA classifier for character-based domains, such as
“x1df6f33a99a10f9c7fdc5d176cd405ed7.so” generated by
Dyre malware, word-based DGA domains, like “emilsmu-
sic.com” generated by Emotet, may often appear more benign
and less indicative of artificial origin. Although they can still
be detected using their domain name, incorporating addi-
tional side information as parameters from DNS traffic (e.g.,
TTL, IP addresses) or information from the WHOIS database
can enhance classification accuracy [12], [13].
The state-of-the-art solutions for detecting DGA domain
names are based on machine learning methods to create DGA
classifiers. Machine learning-based classifiers can be created
in two ways. One way is the featureful approach in which
we create a set of features from a domain name or other
side information and use it to design the detection model.
Examples of works that follow this direction include: [4], [9],
[14], [15].
Another method used by [16]–[18] is the featureless approach
in which we use some deep learning techniques like neural,
convolutional, or LSTM networks to create classifiers. In
this approach, the DGA classifier works on the information
directly contained in the domain name and no features need to
be constructed based on it. Some works like [8], [13] present
a combined approach in which the classifier is trained using
both featureless and featureful manner.
In detecting DGA domains, many works use n-gram anal-
ysis, e.g., [4], [14], [19]–[21]. N-grams are sequences of n
consecutive characters in a string. For example, we can ex-
tract the following list of 2-grams from the label “google”:
[“go”, “oo”, “og”, “gl”, “le”]. There are methods for detecting
DGA domains only by using statistics of n-gram distribution
like [21], which presents a model for detecting DGA domains
based on a reputation score calculated by segmenting the
domain names into n-grams and then calculating a weight
value for each resulting n-gram based on the occurrence of
the corresponding n-gram in non-DGA domains.

2.3. Works Used for Comparison with Proposed Models

Many DGA detection proposals focus on proposing a uni-
versal classifier capable of detecting both character-based

and word-based DGA domains. However, as highlighted in
the findings of [4], some such models only work well in de-
tecting only a specific type of DGA. We reviewed several
state-of-the-art models in the literature that are either strict-
ly designed to detect one type of DGA or have been trained
using only one type of DGA.
The performance metrics of these models, as reported in
the cited papers, should not be directly compared with our
models since they were evaluated using different datasets,
consisting of varying benign DNS traffic and distinct sets
of DGAs. However, we include these in Tab. 4 to provide
a broader perspective on the landscape of DGA detection
models. Table 4 also shows some other general approaches to
detecting DGA domains for a more comprehensive overview.
Below is a brief description of these state-of-the-art solutions.
Paper [19] proposed several DGA detection models, the
best of which was the random forest classifier achieving an
accuracy of 90.80%. The authors used a dataset of 30 000
benign domains and 30 000 character-based DGA domains
that are used by four malware families: Cryptolocker, Goz,
Newgoz, and Conficker, which are all character-based DGAs.
Of the character-based DGA detection models we proposed,
only two (Gaussian naive Bayes and nearest centroid) proved
inferior. The same algorithm used in this work achieves an
accuracy of 97.03% while maintaining a lower false positive
rate (FPR).
The authors of [14] proposed a random forest classifier that
uses 24 classification features extracted from each domain
name. The model was trained on a dataset of 200 000 and
tested on a set of 53 200 DGA domains of 39 different malware
families. The model achieved a good result with 97.03%
accuracy but performed poorly in detecting word-based DGA
domains. In addition, the classifier was unable to correctly
classify any Banjori botnet domains that implement mixed
DGA. In our case, the random forest model with an extended
set of 25 features designed to detect character-based DGA
was able to detect 98.88% of Banjori DGA domains.
Article [21] did not use machine learning techniques to build
a DGA classifier, but instead n-gram analysis of the domain
names was proposed. It used 8 000 benign and 2 265 DGA
domains belonging to various unspecified DGAs to evaluate
the model.
The authors of [22] used only character-based and mixed
DGA-generated domains, so it can be directly compared
with the seven DGA classifiers proposed in our work. The
proposed model is based on the LSTM network and uses a
rather large dataset with a total of 1 675 404 domains, 10% of
which serves as a test dataset. The authors of the referenced
study reported only precision (PPV), true positive rate (TPR),
F1-score, and accuracy in their results. Three of our seven
character-based DGA domain detection models (KNN, RF,
and ET) outperform it, although KNN achieves a slightly
lower TPR (94.98% vs. 95.14%).
The paper [23] focused on the detection of word-based DGA
domains therefore can be directly compared to the CNN and
LSTM models we presented. Domains produced by DGA
Matsnu and Suppobox were used in the evaluation of the

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 33

Hubert Biros and Mirosław Kantor

proposed models. The best classifier turned out to be random
forest, which is outperformed by our two proposed models
for word-based DGA detection in terms of ACC value.
Several classifiers for detecting word-based DGA domains
was proposed in [9]. The best obtained classifier was the J-48
decision tree and it proved to be slightly better than our LSTM
network model, but the CNN network model outperforms it
in all available evaluation metrics.
In [15] DGA detection models based on Kullback-Leibler
divergence and Jaccard index-based metrics are presented.
The best multilayer perceptron (MLP) classifier was tested
using 25 different DGAs, including character-based DGAs
and word-based DGAs.
In [18] an LSTM model is proposed using both character-
based and word-based DGA domain names in the dataset, but
with a much smaller share of the latter.
The authors of [24] present a neural network model using
BiLSTM and CNN layers with an attention mechanism (ATT-
CNN-BiLSTM). The dataset contains 24 different DGA do-
main names, both character-based and word-based.
Article [17] proposed another approach to detect only the
domain names generated by word-based DGAs. The authors
present an ensemble learning-based model using both LSTM
and CNN networks. The dataset consisted of domain names
generated by Suppobox, Gozi, and Matsnu malware. Similar to
the paper [9], our proposed LSTM solution is slightly inferior
to this ensemble model, but the CNN model outperforms it.
[25] presented a deep neural network (DNN) model for
creating a DGA classifier based on features extracted from
the domain names and DNS traffic. The paper used 5 different
character-based DGAs in the dataset, allowing us to compare
the performance of the proposed DNN classifier with our
models for the detection of character-based DGA domain
names. The DNN model performed slightly better in terms
of ACC than the best model proposed in our work, which is
the random forest classifier. However, it should be noted that
the dataset used in our work to train and evaluate the models
contains DGA domains used by 56 malware families.
The paper [11] proposed two DGA classifiers based on LSTM
networks: binary classifiers, such as those presented in our
work, and multi-class classifiers that allow a domain to be
assigned to the specific DGA that generated it. The dataset
included both word-based and character-based DGA domains.

3. Insights into the Machine Learning
Models Used

This section provides a concise but informative overview of
the machine learning algorithms used to detect DGA domains.
Adapting our approach to the nuances of character-based and
word-based DGA domains, we use classical methods such
as logistic regression, Gaussian naive Bayes, support vec-
tor machine, random forest, extremely randomized trees,
k-nearest neighbors, and nearest centroid for character-based
DGA domains detection. In addition, long short-term mem-
ory (LSTM) and convolutional neural network (CNN) are

specifically used for the complex task of word-based DGA
detection.

3.1. Logistic Regression

Logistic regression is a type of regression algorithm tailored
to be used in classification tasks. This algorithm can be used to
compute the probability that an instance represented by the set
of features belongs to a particular class. In the training process,
we aim to optimize values of vector θ, which is a vector of
weights plus the bias term, so that training instances that
represent DGA domains are assigned class 1, and instances
representing benign domains are assigned class 0. During the
training, regularization terms like l1 or l2 can be employed,
to prevent the model from overfitting [26].

3.2. Gaussian Naive Bayes

Gaussian naive Bayes is another example of a supervised ma-
chine learning algorithm that can be used for DGA detection
and it is based on the Bayes theorem [27]. It is a model that
predicts a class of instances based on conditional probabili-
ties. During the training phase, the model builds probability
distributions of values of features from training instances for
two classes of domains (DGA and non-DGA). The likelihood
of the features is assumed to be Gaussian [28]. After training,
the model assigns a new instance x to either class calculating
posterior probabilities that x belongs to DGA and non-DGA
domains. The term “naive” comes from the fact that the mod-
el assumes feature-wise conditional independence given the
class variable [28].

3.3. Support Vector Machine

Support vector machine (SVM) is an approach used for clas-
sification tasks and is frequently regarded as one of the best
classifiers that do not require extensive customization [29].
SVM aims to construct a hyperplane of dimension n− 1 giv-
en that, each instance in our dataset has n features in order to
separate instances belonging to different classes. The clas-
sification decision is made by looking at which side of the
hyperplane the instance lies.
The SVM classifier is sometimes called a soft margin classifier
because the hyperplane it constructs has margins - that is
perpendicular distance from some of the training observations
[29]. The term “soft” comes from the fact the separating
hyperplane may not perfectly separate two classes i.e., some
training instances can be on the wrong side of the margin,
but the obtained separation can generalize better on new
instances. In some cases, the data points of two classes may
even not be separable. With SVM, a kernel function can
be applied to transform feature space. For instance, with a
polynomial kernel, we can transform feature space into a
higher dimension, where the separation of classes can be
done more easily [26].

3.4. Random Forest

Random forest is an example of an ensemble learning algo-
rithm that combines predictions of multiple decision trees.

34
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025

Enhancing DGA Detection with Machine Learning Algorithms

Decision tree on the other hand is a very simple yet very pow-
erful algorithm that can be used for classification tasks [26].
To train the decision tree in Scikit-learn the classification and
regression tree (CART) algorithm is used.
The training process of the decision tree begins by splitting
the training dataset into two subsets using a single feature
fn, and some threshold tfn. The algorithm selects the pair
(fn, tfn), that produces the lowest value of the cost function,
which reflects the impurity of the resulting subsets. After
the first split, the two nodes representing the two subsets of
the training dataset are obtained. The splitting operation is
then performed on these nodes and on the resulting nodes
recursively.
The process stops if the split minimizing the cost function
cannot be found or based on some criteria like the maximum
depth of the tree or maximum number of leaves.
The random forest algorithm trains multiple instances of
decision trees, introducing some randomness into the process
of creating individual trees. The goal of this randomness is to
obtain decision trees that produce as independent decisions as
possible. One approach to introduce this randomness is to use
different training datasets for each classifier or use random
feature subset for splitting decisions. The predictions of each
decision tree classifier are combined to give the final results.
Such an approach often results in better accuracy than the
best classifier in the ensemble [26].

3.5. Extremely Randomized Trees

Extremely randomized trees or extra trees are another ex-
ample of the ensemble learning algorithm. This algorithm is
basically a random forest algorithm that introduces more ran-
domness into the process of building individual trees by using
random thresholds for each feature rather, than searching for
the threshold that best minimizes the cost function [26].

3.6. K-Nearest Neighbors

Classification using the k-nearest neighbors algorithm is a type
of instance-based learning. This model stores the training
instances of the training data and performs classification
on new instances based on a majority vote of the k-nearest
neighbors of training instances. An instance is assigned a
class, that is a majority among k-nearest neighbors [28].

3.7. Nearest Centroid

The nearest centroid classifier is a very simple algorithm,
which assigns each class a mean (centroid) of their instances.
The class of the new instance is assigned based on the centroid
of which class is closer to the new observation [28].

3.8. Convolutional Neural Networks

In the last few years convolutional neural networks (CNNs)
have managed to achieve very good performance on some
complex visual tasks, such as image classification [26].
Though CNNs originated from the exploration of the vi-
sual cortex of the brain, they can be deployed in other tasks,

such as voice recognition or natural language processing
(NLP) [26], [30].
CNNs use convolutional layers which consist of a set of filters
also called kernels. The kernel can be treated as a matrix
that is used in convolution operation with portions of the
input sequence such as pixels of the image or an array of
characters. The objective of this process is to extract patterns
that are important for predictions. For example in the image
processing task, the convolutional layer can extract some
high-level features such as edges [31]. The values in the
matrix representing the kernel, are learned during the training
process.

3.9. Long Short-Term Memory Networks

Long short-term memory networks are a special type of re-
current neural networks (RNN) capable of learning long-term
dependencies [32]. Traditional RNNs suffer from the problem
of a vanishing and exploding gradient during backpropaga-
tion when dealing with more contextual data [32]–[34]. Long
short-term memory networks, or simply LSTMs, use sepa-
rate paths for long-term and short-term memory to avoid the
vanishing and exploding gradient problem [33].
A single LSTM network module consists of three different
gates that control the flow of information: forget gate, input
gate, and output gate. LSTM networks are structured as chains
of repeating modules. The output path from one module serves
as the input for the corresponding path for the next module.

4. Proposed Models for Detecting
Character-based DGA Domains

This section focuses on the use of classical machine learning
methods for character-based DGA domains detection. We
begin with a description of the dataset used. This is followed
by a description of the process of constructing and selecting
features to train the models. We conclude by describing the
training process. The models were built using the Scikit-learn
Python library.

4.1. Dataset

The dataset used consists of training and test subsets. Both
contain non-DGA and DGA domains in a 1:1 ratio. A to-
tal of 450 000 benign domains (400 000 used for training
and 50 000 for model evaluation) were derived from the top
one million domain names ranked by Majestic [35]. As for
the DGA domains, samples from 56 malware families were
used. The DGA domains were obtained by executing reverse-
engineered DGA code snippets available online or using
predefined domain lists.
Table 2 shows the DGA datasets used to train and test the
models. The source column serves as a reference as to where
the domain names came from.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 35

Hubert Biros and Mirosław Kantor

Tab. 2. Character-based and mixed DGA domains comprising the training and test dataset (C – character-based DGA, M – mixed DGA).

Malware family Size of training
dataset

Size of test
dataset Type Source Malware family Size of training

dataset
Size of test

dataset Type Source

Orchard variant 3 9080 1135 C [36] Dyre 8860 1108 C [39]
Vawtrak variant 1 9058 1132 C [37] Enviserv 8854 1107 C [40]

Zeus Newgoz 9029 1129 C [36] Ranbyus variant 2 8850 1106 C [37]
Qsnatch variant 1 9013 1127 C [36] Shiotob 8847 1106 C [36]

Conficker 9007 1126 C [38] Chinad 8829 1104 C [40]
Padcrypt v2.2.97.0 8993 1124 C [36] Cryptolocker 8825 1103 C [38]

Ramdo 8989 1124 C [37] Murofet variant 3 8819 1102 C [37]
Dircrypt 8989 1124 C [36] Vidro 8818 1102 C [40]

Padcrypt v2.2.86.1 8987 1124 C [36] Pitou 8812 1101 C [36]
Ramnit 8980 1122 C [36] Necurs 8772 1096 C [36]

Qsnatch variant 2 8979 1122 C [36] Sisron 8544 1068 C [36]
Tinba 8979 1122 C [37] Pykspa 8516 1065 C [37]

Kraken variant 2 8978 1122 C [36] Banjori 6812 851 M [36]
Fobber variant 2 8976 1122 C [37] Torpig 6157 770 C [41]
Murofet variant 2 8969 1121 C [37] Mydoom 5592 699 C [37]
Locky variant 3 8968 1121 C [37] Simda 5180 647 C [36]
Kraken variant 1 8961 1120 C [36] Zloader 3139 392 C [36]

Proslikefan 8954 1119 C [36] Tempedreve 2823 353 C [37]
Locky variant 2 8931 1117 C [37] Sharkbot v2.8 2582 323 C [36]

Symmi 8928 1116 C [37] Zeus 889 111 C [38]
Pushdo 8925 1116 C [37] Sharkbot v1.63 348 44 C [36]

Ranbyus variant 1 8922 1115 C [37] Sharkbot v0.0 317 40 C [36]
Nymaim variant 1 8916 1115 C [37] Sharkbot v2.1 317 40 C [36]
Qadars variant 3 8914 1114 C [36] Vawtrak variant 3 267 33 C [36]

Verblecon 8896 1112 C [37] Vawtrak variant 2 267 33 C [36]
Murofet variant 1 8881 1110 C [37] Ccleaner 149 19 C [40]
Fobber variant 1 8876 1109 C [37] Alueron Dnschanger 4 1 C [36]

Corebot 8867 1108 C [36] Total 400,000 50,000
Qakbot 8866 1108 C [37]

4.2. Features

In the process of constructing the features, the approach cho-
sen was to use the information contained in the domain name
itself. Before extracting the features from the domain, each
was stripped of its TLD, and the remaining labels were con-
verted to lowercase and combined into a single string without
dots. So, for example, the domain “gmail.google.com” would
be converted to the string “gmailgoogle”.

The approach of not including TLDs can be found in many
works, but as the paper [21] shows, the domain TLD also
contains information that can be useful for DGA detection.
Besides, some TLDs are often associated with malicious
activities [8]. Therefore, each TLD domain has been encoded
with a single number and included as such in the feature set.
Below is a list of the initial 35 proposed features. Features
1–22 and 29–30 were previously used in [4], [14], [19], while
feature 35 was proposed in [21]. Feature 28 is the domain
length and it was used in [8] and [42]. In addition, features
23–27, 31 and 33–34 were proposed in this work.

After applying feature elimination techniques, some of the
features were removed from the final set. Although it may
seem unnecessary to include them in the list below, since
they were eventually removed, we retain their mention to
provide readers with a complete description of the classifier
development process.

Here is the list of features numbered as follows, along with a
brief description:

1) count_2gram(d): A number of 2-grams of the domain
name d, which are also found in the list of 500 most
frequent 2-grams found in the 10 000 most popular non-
DGA domains.

2) m_2gram(d): The 2-gram frequency distribution of the do-
main name d. f(i) is the total number of occurrences of 2-
gram found in the 500 most common 2-grams found in the
10 000 most popular non-DGA domain names. Index(i) is
the rank of 2-gram among all total possible 2-grams found
in the 10 000 most popular non-DGA domains. For ex-
ample, if 2-gram “a0” is the second most popular 2-gram
found in the 10 000 non-DGA domains it gets the rank of
2.

count_2gram(d)∑
i=1

f(i) · index(i) .

3) s_2gram(d): The 2-gram weight of the domain name d.
vt(i) is the rank of 2-gram among the 500 most common 2-
grams found in the 10 000 most popular non-DGA domain
names.

count_2gram(d)∑
i=1

f(i) · vt(i)

count_2gram(d)
.

36
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025

Enhancing DGA Detection with Machine Learning Algorithms

4) ma_2gram(d): The average 2-gram frequency distribution
of the domain name d. len_2gram(d) is the total number
of 2-grams in d.

m_2gram(d)
len_2gram(d)

.

5) sa_2gram(d): The average 2-gram weight distribution of
the domain name d.

s_2gram(d)
len_2gram(d)

.

6) tan_2gram(d): The average number of popular 2-grams in
the domain name d.

count_2gram(d)
len_2gram(d)

.

7) taf_2gram(d): The average frequency of popular 2-grams
in the domain name d.

count_2gram(d)∑
i=1

f(i)

count_2gram(d)
.

8) count_3gram(d): A number of 3-grams of the domain
name d, which are also found in the list of 500 most
frequent 3-grams found in the 10 000 most popular non-
DGA domains.

9) m_3gram(d): The 3-gram frequency distribution of the do-
main name d. f(i) is the total number of occurrences of 3-
gram found in the 500 most common 3-grams found in the
10 000 most popular non-DGA domain names. Index(i) is
the rank of 3-gram among all total possible 3-grams found
in the 10 000 most popular non-DGA domains. For exam-
ple, if 3-gram “a0-” is the second most popular 3-gram
found in 10 000 non-DGA domains it gets the rank of 2.

count_3gram(d)∑
i=1

f(i) · index(i) .

10) s_3gram(d): The 3-gram weight of the domain name d.
vt(i) is the rank of 3-gram among the 500 most common 3-
grams found in the 10 000 most popular non-DGA domain
names.

count_3gram(d)∑
i=1

f(i) · vt(i)

count_3gram(d)
.

11) ma_3gram(d): The average of 3-gram frequency distri-
bution of the domain name d. len_3gram(d) is the total
number of 3-grams in d.

m_3gram(d)
len_3gram(d)

.

12) sa_3gram(d): The average of 3-gram weight distribution
of the domain name d.

s_3gram(d)
len_3gram(d)

.

13) tan_3gram(d): The average number of popular 3-grams in
the domain name d.

count_3gram(d)
len_3gram(d)

.

14) taf_3gram(d): The average frequency of popular 3-grams
in the domain name d.

count_3gram(d)∑
i=1

f(i)

count_3gram(d)
.

15) tanv(d): The distribution of vowels in the domain name d.
countv(d) is the number of vowels found in the domain d.
len(d) is a total number of characters in d.

countnv(d)
len(d)

.

16) tanco(d): The distribution of consonants in the domain
name d. countco(d) is the number of consonants found in
the domain d.

countco(d)
len(d)

.

17) tandi(d): The distribution of digits in the domain name d.
countdi(d) is the number of digits found in the domain d.

countdi(d)
len(d)

.

18) tansc(d): The distribution of special characters in the
domain name d. countsc(d) is the number of occurrences
of the “-” character in d.

countsc(d)
len(d)

.

19) tanhe(d): The distribution of hexadecimal characters in the
domain name d. counthe(d) is the number of hexadecimal
characters found in the domain d.

counthe(d)
len(d)

.

20) ent_char(d): Character entropy of the domain name d.
D(x) is the probability distribution of the character x in
the domain name d.

−
∑
x

D(x) · log
(
D(x)
)
.

21) EOD(d): The expected value of the domain name d. n(x)
is the frequency of occurrence of character x in the do-
main name d, and p(x) is the probability distribution of
character x calculated based on the 10 000 most popular
benign domains. ∑

x

n(x) · p(x)∑
x

n(x)
.

22) is_first_char_digit(d): 1 if the first character of the domain
d is a digit, else 0.

23) vcds_entropy(d): Only four categories of characters are
considered in this entropy: digits, special character “–”,
consonants, and vowels.K(k) is the probability distribu-
tion of category k in the domain name.

−
v,c,d,s∑
k

K(k) · log
(
K(k)
)
.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 37

Hubert Biros and Mirosław Kantor

24) conditional_vcds_entropy(d): In this measurement, the
domain name d is divided into 2-grams, which are denoted
by a pair of categories k and l. The category can be a
vowel, consonant, digit, or special character “–”.K(k|l)
is the probability distribution of a 2-gram in which the first
character belongs to category k and the second to category
l. K(k, l) is the probability distribution of a 2-gram in
which one character belongs to the k category and the
other to the l category.

−
v,c,d,s∑
k

v,c,d,s∑
l

K(k, l) · log 1
K(k|l) .

25) double_consonants(d): The number of occurrences of two
consonants next to each other in the domain name d.

26) double_vowels(d): The number of occurrences of two
vowels next to each other in the domain name d.

27) double_chars(d): The number of occurrences of two of
the same characters next to each other in the domain name
d.

28) len(d): The total number of characters in the domain name
d.

29) entropy_2gram(d): The 2-gram entropy of the domain
name d. vt(i) is the rank of 2-gram among the 500 most
common 2-grams found in the 10 000 most popular non-
DGA domain names.

−
count_2gram(d)∑

i=1

vt(i)
500
· logvt(i)
500
.

30) entropy_3gram(d): The 3-gram entropy of the domain
name d. vt(i) is the rank of 3-gram among the 500 most
common 3-grams found in the 10 000 most popular non-
DGA domain names.

−
count_3gram(d)∑

i=1

vt(i)
500
· logvt(i)
500
.

31) vc_bigram_ratio(d): The ratio of the number of 2-grams
that comprise a vowel-consonant or consonant-vowel pair
vc(d) to the number of 2-grams of the domain name d.

vc(d)
len_2gram(d)

.

32) tld: Encoded top level domain.
33) jsd_2gram(d): The 2-gram Jensen-Shannon divergence of

the domain name d. P (x) is the probability distribution
of 2-grams in the domain name d. Q(x) is the probability
distribution of 2-grams in the 10 000 most popular domain
names ranked by Majestic.M(x) is a mixture distribution
of P and Q.

1
2

∑
x

P (x) log
P (x)
M(x)

+
1
2

∑
x

Q(x) log
Q(x)
M(x)

.

34) jsd_3gram(d): The 3-gram Jensen-Shannon divergence of
the domain name d. P (x) is the probability distribution
of 2-grams in the domain name d. Q(x) is the probability
distribution of 3-grams in the 10 000 most popular domain

names ranked by Majestic.M(x) is a mixture distribution
of P and Q.

1
2

∑
x

P (x) log
P (x)
M(x)

+
1
2

∑
x

Q(x) log
Q(x)
M(x)

.

35) ji(d): Jaccard’s index of the domain name d. 2grams(d)
is the set of 2-grams that make up the domain name d.
DN1, DN2, . . . , DN10000 are the 10 000 most popular
domains ranked by Majestic.

10000∑
i=1

|2grams(d) ∩ 2grams(DNi)|
|2grams(d) ∪ 2grams(DNi)|

.

4.3. Feature Selection

In order to remove irrelevant and redundant features, a combi-
nation of feature selection techniques was employed to reduce
the number of features from an initial set of 35. Firstly, ANO-
VA (analysis of variance) was utilized, which is particularly
useful when dealing with categorical target variables and
continuous features [43]. This statistical test helps identify
features that are dependent on the target variable (class 0 or
1). Subsequently, the random forest and extra trees algorithms
were leveraged to assess feature importance. By ranking fea-
tures based on their contribution to predictive accuracy, this
technique aids in the identification of less impactful features
that may be considered for removal [26].

The last technique used for feature selection was to use the
Pearson correlation method to calculate correlations between
each pair of features. This helped to uncover and eliminate
redundant features, that convey the same type of information.

As a starting point for eliminating redundant features, we took
a correlation coefficient value greater than 0.9 or less than
–0.9. Thus, we removed features 9, 11, 29, 30, and 33. Then,
taking into account the results of the ANOVA test and the
feature importance produced by random forest and extra trees
algorithms, we got rid of more features through the process of
elimination. In this way, features 7, 22, 25, 26, and 27, were
removed. In this way, we removed 10 features from the initial
set of 35.

4.4. Training

In the training phase of our character-based DGA detec-
tion models, we used a technique known as 10-fold cross-
validation to select the best model hyperparameters. Dividing
our dataset into ten groups, or folds, the learning process
is repeated ten times, with each fold serving once as a test
set. This strategy provides a more comprehensive assess-
ment of model performance across different subsets of the
data [26], [28], [29].

After selecting the best-performing hyperparameters, the
models were re-trained using the entire training dataset.

38
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025

Enhancing DGA Detection with Machine Learning Algorithms

Tab. 3. Word-based and mixed DGA domains comprising the training and test dataset (W – word-based DGA, M – mixed DGA).

Malware family Size of training dataset Size of test dataset Type Source

Nymaim variant 2 66853 8356 W [36]

Banjori 17246 2156 M [36]

Suppobox 66844 8356 W [37]

Gozi 47939 5992 W [37]

Matsnu 66912 8364 W [38]

Rovnix 66770 8346 W [38]

Bigviktor 66780 8348 W [40]

Emotet 656 82 W [44]

Total 400,000 50,000

5. Proposed Models for Detecting
Word-based DGA Domains

This section delves into the topic of word-based DGA detec-
tion, extending our exploration beyond character-based DGA
classifiers. Using advanced neural network architectures, par-
ticularly long short-term memory networks and convolutional
neural networks, the methodology for learning classifiers will
be described. Initially, we describe the dataset used to train
and evaluate the classifiers. We then examine the training pro-
cess and delve into the architectural nuances of the models
used. The models were constructed using the Keras library
with the TensorFlow backend in Python.

5.1. Dataset

The dataset used to train and evaluate the classifiers includes
a total of 900 000 domain names. Within this dataset, 450 000
benign domain names were taken from the one million most
popular domain names ranked by Majestic [35], with a subset

Listing 1: LSTM model code
model=Sequential(name=’lstm_model’)
model.add(Embedding(input_dim=56_000,

output_dim=128, input_length=64))
model.add(LSTM(units=128, unroll=True,

return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=128, unroll=True))
model.add(Dropout(0.2))
model.add(Dense(units=128, activation=’relu’,

kernel_initializer=’glorot_normal’))
model.add(Dropout(0.2))
model.add(Dense(units=64, activation=’relu’,

kernel_initializer=’glorot_normal’))
model.add(Dropout(0.2))
model.add(Dense(units=1, activation=’sigmoid’,

kernel_initializer=’glorot_normal’))
opt = Adam(learning_rate=0.005)
model.compile(loss=’binary_crossentropy’,

optimizer=opt, metrics=[’accuracy’])

of 50 000 domains reserved for the purpose of model evalua-
tion. At the same time, 450 000 domains associated with 8
different malware families were collected to form the DGA
domain set. As in the dataset used to create the character-
based DGA classifier, the DGA domains were obtained by
executing reverse-engineered DGA code snippets available
online or using predefined domain lists. Notably, similar to
the approach taken in creating character-based DGA clas-
sifiers, one mixed-type DGA was included in the dataset.
Details of the DGA domains used are shown in Tab. 3.

5.2. Training

During the process of building the classifiers, different archi-
tectures were tested, and those that showed the best perfor-
mance are presented in this paper. Code snippets showing the

Listing 2: CNN model code

model=Sequential(name=’cnn_model’)
model.add(Embedding(input_dim=56_000,

output_dim=128, input_length=64))
model.add(Conv1D(200, 4, padding=’same’,

activation=’relu’,
kernel_initializer=’glorot_normal’))

model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2, strides=2,

data_format=’channels_first’))
model.add(Conv1D(100, 2, padding=’same’,

activation=’relu’))
model.add(MaxPooling1D(pool_size=2, strides=2,

data_format=’channels_first’))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation=’relu’,

kernel_initializer=’glorot_normal’))
model.add(Dropout(0.5))
model.add(Dense(10, activation=’relu’,

kernel_initializer=’glorot_normal’))
model.add(Dense(1, activation=’sigmoid’,

kernel_initializer=’glorot_normal’))
model.compile(loss=’binary_crossentropy’,

optimizer=’adam’, metrics=[’accuracy’])

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 39

Hubert Biros and Mirosław Kantor

Tab. 4. Compilation of evaluation metrics for our proposed models and state-of-the-art solutions (C – character-based DGA, W – word-based
DGA, G – general approach for detecting both word-based and character-based DGA domain names).

Classifier Type PPV TPR FPR FNR F1 ACC AUC

RF [19] C 90.7% 91% 9.3% 90.8% 90.8%

RF [14] G 97.08% 96.98% 2.92% 3.02% 97.03% 97.03%

N-Gram [21] G 6.14% 7.42% 94.04%

LSTM [22] C 95.05% 95.14% 94.58% 95.14%

RF [23] W 78.2%

J48 [9] W 98.25% 95.81% 1.78% 4.19% 97.01% 96.99%

MLP [15] G 99.5% 99.55% 99.5% 99.5%

LSTM [18] G 98.43% 98.4% 98.42%

ATT-CNN-BiLSTM [24] G 99.01% 99.07% 98.79% 98.82% 0.9990

CNN+LSTM [17] W 95.57% 97.66% 4.54% 96.6% 96.56% 0.9944

DNN [25] C 89.24% 99.14% 97.79% 0.9900

LSTM [11] G 96.74% 85.71% 89.13% 0.9993

The proposed models in our work

ET C 96.84% 95.48% 3.12% 4.52% 96.16% 96.18% 0.9937

SVM C 94.39% 93.08% 5.53% 6.92% 93.73% 93.77% 0.9846

LR C 94.28% 93.18% 5.66% 6.82% 93.72% 93.76% 0.9847

GNB C 83.28% 91.27% 18.33% 8.73% 87.09% 86.47% 0.9278

NC C 85.36% 86.50% 14.83% 13.50% 85.93% 85.83% 0.9380

RF C 97.60% 96.43% 2.37% 3.57% 97.01% 97.03% 0.9954

KNN C 96.33% 94.98% 3.62% 5.02% 95.65% 96.00% 0.9901

LSTM W 94.34% 96.50% 5.78% 3.50% 95.41% 95.36% 0.9905

CNN W 97.84% 98.78% 2.19% 1.22% 98.31% 98.30% 0.9975

definitions of LSTM and CNN models in Python using the
Keras library are shown in Listing 1 and 2, respectively.
The process of training the neural networks began with prop-
er domain preparation, which involved converting them to
lowercase, removing TLDs, and then breaking them down
into lists of words that make up the domain name using the
wordninja package in Python [45]. For example, the domain
“watchfire.com” would be converted to a list [“watch”, “fire”].
Words to be input to neural networks must be uniquely en-
coded. During data processing, it was determined that 56 000
unique values could be used to encode all the words mak-
ing up the training and test set. In fact, in the dataset, the
number of unique words forming all domains was 55 027, but
experiments showed that the size of the vocabulary does not
affect the performance of the models, so for simplicity it was
decided to set the number known in the Keras embedding lay-
er as input_dim, which refers to the size of the vocabulary,
to 56 000. Similarly, we set the maximum number of words
a domain can contain to 64 (input_length parameter in the
embedding layer).
Both CNN and LSTM models have an embedding layer that
learns to map the corresponding values representing the words

that make up the domain to 128-dimensional vectors. A
number of works, such as [11], [13], [16]– [18], [46], use
deep learning models with embedding layers that rely on
character embedding, which is different from the approach
we used.

The LSTM model implements two long short-term memory
layers, each consisting of 128 units. The first LSTM layer is
set to return the full sequence of output data for each time
step. By applying dropout layers at a rate of 20% after each
LSTM layer, the model alleviates over-fitting during learning.

Following the LSTM layers are three dense layers, containing
128, 64, and 1 unit(s), respectively. The first two use the
rectified linear unit (ReLU) activation function. These dense
layers are interspersed with dropout layers to increase the
robustness of the model. The last dense layer with a sigmoidal
activation function makes the model act as a binary classifier.

The CNN model employs two Conv1D layers containing 200
and 100 filters, respectively. These convolution layers are
activated using the ReLU function. Dropout layers with a
50% dropout rate follow each convolution layer to mitigate
over-fitting. The convolution layers are followed by two Max-

40
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025

Enhancing DGA Detection with Machine Learning Algorithms

Tab. 5. Accuracy for each character-based DGA detection model relating to different DGA families and benign domains.

Origin of domains ET [%] SVM [%] LR [%] GNB [%] NC [%] RF [%] KNN [%]

Majestic 96.88 94.47 94.34 81.67 85.17 97.63 96.38

Orchard v3 99.47 97.00 97.27 100.00 99.56 99.65 99.65

Vawtrak v1 92.49 92.49 92.84 89.93 85.34 93.82 93.29

Zeus Newgoz 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Qsnatch v1 91.30 92.64 92.81 94.94 93.70 92.19 89.97

Conficker 82.15 82.33 82.24 92.63 88.10 84.81 79.31

Padcrypt v2.2.97.0 98.67 98.49 98.58 92.35 75.09 99.11 98.93

Ramdo 99.38 99.82 99.73 93.24 78.11 99.47 99.29

Dircrypt 97.86 97.78 97.69 96.26 92.70 98.04 96.89

Padcrypt v2.2.86.1 98.84 98.58 98.58 92.35 76.25 99.64 99.64

Kraken v2 94.56 92.16 92.25 94.39 91.00 95.37 92.78

Ramnit 99.55 98.66 98.75 98.04 94.39 99.82 98.66

Qsnatch v2 50.53 40.29 39.75 79.14 80.66 60.96 48.31

Fobber v2 96.17 95.01 95.37 94.74 90.29 96.79 94.56

Tinba 97.86 97.95 98.13 96.88 91.62 97.42 96.52

Murofet v2 99.91 99.82 99.73 98.39 95.90 99.82 99.38

Locky v3 96.79 95.36 95.81 95.63 92.15 96.97 95.09

Kraken v1 96.96 97.14 97.14 93.66 86.61 97.14 97.05

Proslikefan 89.54 87.31 87.40 92.14 89.28 91.42 86.68

Locky v2 88.90 88.81 88.81 93.82 90.06 90.87 87.38

Symmi 95.97 97.49 97.49 75.36 49.28 98.12 97.31

Pushdo 83.96 71.68 72.67 55.20 42.47 98.57 90.50

Ranbyus v1 99.10 99.64 99.64 97.22 92.20 99.01 98.92

Nymaim v1 88.25 86.01 85.83 92.65 87.98 88.07 84.30

Qadars v3 99.64 99.73 99.73 99.46 95.78 99.64 99.37

Verblecon 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Murofet v1 99.91 100.00 100.00 99.91 99.55 99.91 99.91

Fobber v1 99.91 100.00 100.00 99.01 96.30 100.00 99.91

Dyre 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Qakbot 99.10 98.74 98.74 97.74 94.95 99.19 98.65

Corebot 100.00 100.00 100.00 99.91 100.00 100.00 100.00

Enviserv 99.82 99.91 99.91 100.00 99.55 99.91 99.73

Shiotob 99.19 99.82 99.82 99.64 98.01 99.19 98.19

Ranbyus v2 99.55 100.00 100.00 97.92 93.58 99.64 99.19

Chinad 100.00 100.00 100.00 99.91 99.73 99.91 99.73

Cryptolocker 99.09 99.37 99.27 96.46 91.30 99.09 98.01

Murofet v3 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Vidro 95.55 94.28 94.37 96.64 92.83 94.74 93.92

Pitou 96.91 61.22 63.03 46.23 30.52 98.27 98.27

Cecurs 97.35 96.44 96.53 95.62 91.24 97.35 96.81

Sisron 100.00 100.00 100.00 100.00 98.60 100.00 100.00

Pykspa 89.58 83.38 83.47 75.68 69.95 91.17 86.67

Banjori 100.00 94.24 93.07 0.00 0.00 99.88 100.00

Torpig 98.44 93.77 94.29 93.12 85.19 98.83 97.01

Mydoom 93.13 88.27 88.84 77.68 67.24 94.85 93.85

Simda 94.44 55.64 55.49 93.82 92.43 93.97 94.44

Zloader 99.74 100.00 100.00 98.72 96.17 99.74 99.49

Tempedreve 90.08 87.82 88.95 90.08 86.69 90.93 89.24

Sharkbot v2.8 100.00 100.00 100.00 100.00 100.00 100.00 99.69

Zeus 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Sharkbot v1.63 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Sharkbot v2.1 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Sharkbot v0.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Vawtrak v3 18.18 21.21 24.24 36.36 30.30 15.15 3.03

Vawtrak v2 36.36 30.30 36.36 48.48 33.33 36.36 30.30

Ccleaner 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Alueron Dnschanger 100.00 100.00 100.00 100.00 100.00 100.00 100.00

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 41

Hubert Biros and Mirosław Kantor

Pooling1D layers with pool sizes of 2 and steps of 2. The
CNN model, like the LSTM, adds 3 dense layers. The first
two contain 100 and 10 units respectively with ReLU acti-
vation functions and one dropout layer. The last dense layer
with a sigmoidal activation function transforms the model
into a binary classifier. Dense layers in both models and con-
volution layers in the CNN model are initialized with glorot
normal weights.

The compilation of both models uses binary cross-entropy
loss, Adam’s optimizer, and accuracy as evaluation factors.
The LSTM model set the learning rate to 0.005, while the
CNN model used the default value of 0.001. The LSTM model
was trained for 5 epochs with a batch size of 128, while the
CNN model underwent a longer learning period of 10 epochs
under the same batch size conditions.

6. Evaluation of the Models

After the training process, we proceeded to evaluate models’
performance using a dedicated test dataset containing 100 000
domain names. To measure the performance of the models,
we used seven key metrics: ACC (overall accuracy), PPV
(positive predictive value) or precision, TPR (true positive
rate) or recall, FPR (false positive rate), FNR (false negative
rate), F1 score and AUC (area under the ROC curve). The
formulas used to calculate these indicators are shown below:

PPV =
TP

TP + FP
· 100% , (1)

TPR =
TP

TP + FN
· 100% , (2)

FPR =
FP

TN + FP
· 100% , (3)

FNR =
FN

TP + FN
· 100% , (4)

F1 =
2TP

2TP + FP + FN
· 100% , (5)

ACC =
TP + TN

TP + TN + FP + FN
· 100% , (6)

AUC =

∫ 1
0

TPR(FPR) dFPR . (7)

Where true positives (TP) is the number of DGA domains that
were classified correctly, true negatives (TN) is the number of
benign domains that were classified correctly, false positives
(FP) is the number of benign domains that were misclassified
as DGA, and false negatives (FN) is the number of DGA
domains that were classified as benign domains.

The specific values of these performance indicators for each
model for detecting both character-based and word-based
DGA are summarized at the bottom of the Tab. 4.

Tab. 6. Accuracy for each word-based DGA detection model relating
to different DGA families and benign domains.

Origin of domains LSTM [%] CNN [%]

Majestic 94.22 97.81

Matsnu 99.76 99.88

Nymaim v2 89.64 96.46

Suppobox 97.69 99.77

Bigviktor 98.22 99.82

Rovnix 99.84 99.96

Gozi 93.56 96.81

Banjori 100.00 100.00

Emotet 9.76 17.07

7. Conclusions

In the case of detecting domains generated by character-based
DGAs, five of the seven classifiers proposed in this work
achieved ACC greater than 90%. The random forest-based
model was the best classifier, achieving an ACC of 97.03%
with fairly low FPR and FNR. Random forest has already been
successfully used in other works, such as [14], [19] and [23].
The worst performing classifiers were those based on the
gaussian naive Bayes model and the nearest centroid model,
achieving ACCs of 86.47% and 85.83%, respectively. Table
5 also shows that these two models were unable to detect any
of the 851 domains belonging to the mixed DGA used by the
Banjori malware.

All models performed equally poorly in detecting DGA do-
mains belonging to Vawtrak v2 and Vawtrak v3 malware,
achieving an accuracy of less than 50%. If we look at the
domains generated by these two variants, we can see that
they are quite pronounceable character-based DGA domains.
Examples of domains belonging to Vawtrak v2 include “alo-
hgufda.com”, “usornatda.com”, or “fosornom.com”, exam-
ples of Vawtrak v3 domains include “sumiwgecoll.com”,
“aldemegnehi.com”, and “garidsemogn.com”.

As for the task of detecting word-based DGA domains, both
proposed classifiers achieved ACC scores greater than 95%.
The CNN layer-based model was the best, achieving an ACC
of 98.30% with low FPR and FNR values of 2.19% and
1.22% respectively. Table 6 shows that the model additionally
achieved accuracy close to 100% for all DGAs except one
belonging to the Emotet malware. The test dataset included
82 domains belonging to this DGA, and both the LSTM and
CNN models performed poorly in detecting them, failing to
exceed an accuracy of 20%.

This result may have been influenced by the fact that many
of the domains generated by the Emotet DGA, such as
“www.69po.com”, “ceylonsri.com”, or “senteum.com”, are
quite short in contrast to other DGAs and more closely re-
semble domains generated by character-based DGAs.

42
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025

Enhancing DGA Detection with Machine Learning Algorithms

References
[1] “Botnet Threat Update Q3 2023”, Spamhaus, [Online]. Available:
https://info.spamhaus.com/botnet-threat-updates.

[2] “What is a Botnet?”, Palo Alto Networks, [Online]. Avail-
able: https://www.paloaltonetworks.com/cyberpedia/wha
t-is-botnet.

[3] A. Randall et al., “The Challenges of Blockchain-based Naming Sys-
tems for Malware Defenders”, 2022 APWG Symposium on Electronic
Crime Research (eCrime), Boston, USA, 2022 (https://doi.org/
10.1109/eCrime57793.2022.10142131).

[4] X.H. Vu, X.D. Hoang, and T.H.H. Chu, “A Novel Model Based on
Ensemble Learning for Detecting DGA Botnets”, 2022 14th Interna-
tional Conference on Knowledge and Systems Engineering (KSE),
Nha Trang, Vietnam, 2022 (https://doi.org/10.1109/KSE56
063.2022.9953792).

[5] E. Durmaz, “DGA Classification and Detection for Auto-
mated Malware Analysis”, Cyber.WTF, 2017 [Online]. Avail-
able: https://cyber.wtf/2017/08/30/dga-classification
-and-detection-for-automated-malware-analysis.

[6] “Kaspersky Security Bulletin 2023”, Kaspersky, [Online]. Available:
https://media.kasperskycontenthub.com/wp-content/up
loads/sites/43/2023/11/28102415/KSB_statistics_202
3_en.pdf.

[7] L. Asher-Dotan, “What is Domain Generation Algorithm: 8
Real World DGA Variants”, Cybereason, [Online]. Available:
https://www.cybereason.com/blog/what-are-domain-g
eneration-algorithms-dga.

[8] R. Sivaguru et al., “Inline Detection of DGA Domains Using Side
Information”, IEEE Access, vol. 8, pp. 141910–141922, 2020 (http
s://doi.org/10.1109/access.2020.3013494).

[9] X.D. Hoang and X.H. Vu, “A Novel Machine Learning-based Ap-
proach for Detecting Word-based DGA Botnets”, Journal of Theoret-
ical and Applied Information Technology, vol. 99, no. 24, 2021.

[10] D. Plohmann et al., “A comprehensive measurement study of domain
generating malware”, Proc. of 25th USENIX Security Symposium,
Austin, USA, pp. 263–278, 2016.

[11] J. Woodbridge, H.S. Anderson, A. Ahuja, and D. Grant, “Predicting
Domain Generation Algorithms with Long Short-Term Memory
Networks”, arXiv, 2016 (https://doi.org/10.48550/arXiv.16
11.00791).

[12] M. Pereira et al., “Dictionary Extraction and Detection of Algorithmi-
cally Generated Domain Names in Passive DNS Traffic”, International
Symposium on Research in Attacks, Intrusions, and Defenses, Herak-
lion, Greece, 2018 (https://doi.org/10.1007/978-3-030-00
470-5_14).

[13] R.R. Curtin et al., “Detecting DGA Domains with Recurrent Neural
Networks and Side Information”, Proc. of the 14th International
Conference on Availability, Reliability and Security – ARES’19, pp.
1–10, 2019 (https://doi.org/10.1145/3339252.3339258).

[14] X.D. Hoang and X.H. Vu, “An Improved Model for Detecting DGA
Botnets Using Random Forest Algorithm”, Information Security
Journal: A Global Perspective, vol. 31, no. 4, pp. 441–450, 2021
(https://doi.org/10.1080/19393555.2021.1934198).

[15] A. Cucchiarelli, C. Morbidoni, L. Spalazzi, and M. Baldi, “Algorith-
mically Generated Malicious Domain Names Detection Based on
n-Grams Features”, Expert Systems with Applications, vol. 170, art.
no. 114551, 2021 (https://doi.org/10.1016/j.eswa.2020.
114551).

[16] B. Yu et al., “Inline DGA Detection with Deep Networks”, 2017 IEEE
International Conference on Data Mining Workshops (ICDMW), New
Orleans, USA, 2017 (https://doi.org/10.1109/ICDMW.2017
.96).

[17] K. Highnam, D. Puzio, S. Luo, and N.R. Jennings, “Real-time De-
tection of Dictionary DGA Network Traffic Using Deep Learn-
ing”, SN Computer Science, vol. 2, art. no. 110, 2021 (https:
//doi.org/10.1007/s42979-021-00507-w).

[18] D. Tran et al., “A LSTM Based Framework for Handling Multiclass
Imbalance in DGA Botnet Detection”, Neurocomputing, vol. 275, pp.
2401–2413, 2018 (https://doi.org/10.1016/j.neucom.2017
.11.018).

[19] X.D. Hoang and Q.C. Nguyen, “Botnet Detection Based on Machine

Learning Techniques Using DNS Query Data”, Future Internet, vol.
10, art. no. 43, 2018 (https://doi.org/10.3390/fi10050043).

[20] S. Yadav, A.K.K. Reddy, A.L.N. Reddy, and S. Ranjan, “Detecting
Algorithmically Generated Malicious Domain Names”, Proc. of the
10th ACM SIGCOMM Conference on Internet Measurement, pp.
48–61, 2010 (https://doi.org/10.1145/1879141.1879148).

[21] H. Zhao, Z. Chang, G. Bao, and X. Zeng, “Malicious Domain Names
Detection Algorithm Based on N-Gram”, Journal of Computer Net-
works and Communications, pp. 1–9, 2019 (https://doi.org/10
.1155/2019/4612474).

[22] Y. Qiao et al., “DGA Domain Name Classification Method Based
on Long Short-term Memory with Attention Mechanism”, Applied
Sciences, vol. 9, no. 20, art. no. 4205, 2019 (https://doi.org/10
.3390/app9204205).

[23] L. Yang et al., “A Novel Detection Method for Word-based DGA”,
Lecture Notes in Computer Science, vol. 11064, pp. 472–483, 2018
(https://doi.org/10.1007/978-3-030-00009-7_43).

[24] F. Ren, Z. Jiang, X. Wang, and J. Liu, “A DGA Domain Names Detec-
tion Modeling Method Based on Integrating an Attention Mechanism
and Deep Neural Network”, Cybersecurity, vol. 3, art. no. 4, 2020
(https://doi.org/10.1186/s42400-020-00046-6).

[25] Y. Li, K. Xiong, T. Chin, and C. Hu, “A Machine Learning Framework
for Domain Generation Algorithm (DGA)-based Malware Detection”,
IEEE Access, vol. 7, pp. 32765–32782, 2019 (https://doi.org/
10.1109/access.2019.2891588).

[26] A. Géron, Hands-on Machine Learning with Scikit-learn, Keras,
and TensorFlow, O’Reilly Media, Inc, 2nd ed., 848 p., 2019 (ISBN:
9781492032649).

[27] A. Smola and S.V.N. Vishwanathan, Introduction to Machine Learn-
ing, Cambridge University Press: Cambridge, UK, 2008.

[28] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python, Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011
(https://dl.acm.org/doi/10.5555/1953048.2078195).

[29] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning with Applications in R, Springer, New York, 440
p., 2013 (https://doi.org/10.1007/978-1-4614-7138-7).

[30] K. Fukushima, “Neocognitron: A Self-organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift
in Position”, Biological Cybernetics, vol. 36, pp. 193–202, 1980
(https://doi.org/10.1007/BF00344251).

[31] S. Saha, “A Comprehensive Guide to Convolutional Neural Net-
works the ELI5 way”, Saturn Cloud, 2018 [Online], Avail-
able: https://saturncloud.io/blog/a-comprehensive-gu
ide-to-convolutional-neural-networks-the-eli5-way.

[32] C. Olah, “Understanding LSTM Networks”, Colah, 2015 [Online],
Available: https://colah.github.io/posts/2015-08-Unde
rstanding-LSTMs/.

[33] J. Starmer, “Long Short-Term Memory (LSTM), Clearly Explained”,
StatQuest with Josh Starmer, 2022 [Online], Available: https:
//www.youtube.com/watch?v=YCzL96nL7j0.

[34] S. Hochreiter and J. Schimdhuber, “Long Short-Term Memory”,
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997 (https:
//doi.org/10.1162/neco.1997.9.8.1735).

[35] “The Majestic Million”, Majestic, [Online], Available: https://ma
jestic.com/reports/majestic-million.

[36] J. Bader, “Binary Reverse Engineering Blog”, [Online], Available:
https://bin.re/blog.

[37] J. Bader, “Domain Generation Algorithms”, GitHub repository, [On-
line], Available: https://github.com/baderj/domain_gener
ation_algorithms.

[38] A. Abakumov, “DGA”, GitHub repository, [Online], Available: http
s://github.com/andrewaeva/DGA.

[39] F. Denis, “Dyre/Dyreza DGA”, GitHub repository, [Online], Avail-
able: https://gist.github.com/jedisct1/33ab6b4e81209d
bf53a3.

[40] “DGA”, GitHub repository, [Online], Available: https://github.
com/360netlab/DGA.

[41] P. Chaignon, “DGA-collection”, GitHub repository, [Online], Avail-
able: https://github.com/pchaigno/dga-collection.

[42] T.D. Truong and G. Cheng, “Detecting Domain-flux Botnet Based on
DNS Traffic Features in Managed Network”, Security and Communi-

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY FITCE/2025 43

https://info.spamhaus.com/botnet-threat-updates
https://www.paloaltonetworks.com/cyberpedia/what-is-botnet
https://www.paloaltonetworks.com/cyberpedia/what-is-botnet
https://doi.org/10.1109/eCrime57793.2022.10142131
https://doi.org/10.1109/eCrime57793.2022.10142131
https://doi.org/10.1109/KSE56063.2022.9953792
https://doi.org/10.1109/KSE56063.2022.9953792
https://cyber.wtf/2017/08/30/dga-classification-and-detection-for-automated-malware-analysis
https://cyber.wtf/2017/08/30/dga-classification-and-detection-for-automated-malware-analysis
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/11/28102415/KSB_statistics_2023_en.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/11/28102415/KSB_statistics_2023_en.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/11/28102415/KSB_statistics_2023_en.pdf
https://www.cybereason.com/blog/what-are-domain-generation-algorithms-dga
https://www.cybereason.com/blog/what-are-domain-generation-algorithms-dga
https://doi.org/10.1109/access.2020.3013494
https://doi.org/10.1109/access.2020.3013494
https://doi.org/10.48550/arXiv.1611.00791
https://doi.org/10.48550/arXiv.1611.00791
https://doi.org/10.1007/978-3-030-00470-5_14
https://doi.org/10.1007/978-3-030-00470-5_14
https://doi.org/10.1145/3339252.3339258
https://doi.org/10.1080/19393555.2021.1934198
https://doi.org/10.1016/j.eswa.2020.114551
https://doi.org/10.1016/j.eswa.2020.114551
https://doi.org/10.1109/ICDMW.2017.96
https://doi.org/10.1109/ICDMW.2017.96
https://doi.org/10.1007/s42979-021-00507-w
https://doi.org/10.1007/s42979-021-00507-w
https://doi.org/10.1016/j.neucom.2017.11.018
https://doi.org/10.1016/j.neucom.2017.11.018
https://doi.org/10.3390/fi10050043
https://doi.org/10.1145/1879141.1879148
https://doi.org/10.1155/2019/4612474
https://doi.org/10.1155/2019/4612474
https://doi.org/10.3390/app9204205
https://doi.org/10.3390/app9204205
https://doi.org/10.1007/978-3-030-00009-7_43
https://doi.org/10.1186/s42400-020-00046-6
https://doi.org/10.1109/access.2019.2891588
https://doi.org/10.1109/access.2019.2891588
https://dl.acm.org/doi/10.5555/1953048.2078195
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/BF00344251
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.youtube.com/watch?v=YCzL96nL7j0
https://www.youtube.com/watch?v=YCzL96nL7j0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://bin.re/blog
https://github.com/baderj/domain_generation_algorithms
https://github.com/baderj/domain_generation_algorithms
https://github.com/andrewaeva/DGA
https://github.com/andrewaeva/DGA
https://gist.github.com/jedisct1/33ab6b4e81209dbf53a3
https://gist.github.com/jedisct1/33ab6b4e81209dbf53a3
https://github.com/360netlab/DGA
https://github.com/360netlab/DGA
https://github.com/pchaigno/dga-collection

Hubert Biros and Mirosław Kantor

cation Networks, vol. 9, pp. 2338–2347, 2016 (https://doi.org/
10.1002/sec.1495).

[43] J. Brownlee, “How to Perform Feature Selection with Numer-
ical Input Data”, Machine Learning Mastery, [Online], Avail-
able: https://machinelearningmastery.com/feature-sele
ction-with-numerical-input-data/.

[44] D. Takahashi, “Emotet Domain”, GitHub repository, [Online], Avail-
able: https://github.com/HASH1da1/emotet-domain.

[45] Wordninja 2.0.0., Python Package Index, [Online], Available: https:
//pypi.org/project/wordninja/.

[46] R. Sivaguru et al., “An Evaluation of DGA Classifiers”, 2018 IEEE
International Conference on Big Data (Big Data), Seattle, USA, 2018
(https://doi.org/10.1109/BigData.2018.8621875).

Hubert Biros
Independent Researcher, Kraków, Poland
E-mail: hubertbiros00@gmail.com

Mirosław Kantor, Ph.D.
Institute of Telecommunications
https://orcid.org/0000-0002-3160-6422

E-mail: miroslaw.kantor@agh.edu.pl
AGH University of Krakow, Kraków, Poland
https://www.agh.edu.pl

https://doi.org/10.1002/sec.1495
https://doi.org/10.1002/sec.1495
https://machinelearningmastery.com/feature-selection-with-numerical-input-data/
https://machinelearningmastery.com/feature-selection-with-numerical-input-data/
https://github.com/HASH1da1/emotet-domain
https://pypi.org/project/wordninja/
https://pypi.org/project/wordninja/
https://doi.org/10.1109/BigData.2018.8621875
https://orcid.org/0000-0002-3160-6422
https://www.agh.edu.pl

	Introduction
	Related Works
	Overview of DGA Types
	DGA Detection Approaches
	Works Used for Comparison with Proposed Models

	Insights into the Machine Learning Models Used
	Logistic Regression
	Gaussian Naive Bayes
	Support Vector Machine
	Random Forest
	Extremely Randomized Trees
	K-Nearest Neighbors
	Nearest Centroid
	Convolutional Neural Networks
	Long Short-Term Memory Networks

	Proposed Models for Detecting Character-based DGA Domains
	Dataset
	Features
	Feature Selection
	Training

	Proposed Models for Detecting Word-based DGA Domains
	Dataset
	Training

	Evaluation of the Models
	Conclusions

