
FPGA-based Low Latency Square Root
CORDIC Algorithm

Mariusz Węgrzyn1, Stepan Voytusik2, and Nataliia Gavkalova3

1Cracow University of Technology, Cracow, Poland,
2Lviv Polytechnic National University, Lviv, Ukraine,
3Warsaw University of Technology, Warsaw, Poland

https://doi.org/10.26636/jtit.2025.1.1950

Abstract The coordinate rotation digital computer (CORDIC)
algorithm is a popular method used in many fields of science
and technology. Unfortunately, it is a time-consuming process
for central processing units (CPUs) and graphics processing
units (GPUs), and even for specialized digital signal process-
ing (DSP) solutions. The CORDIC algorithm is an alternative
for Newton-Raphson numerical calculation and for the FPGA
based resource-expensive look-up-table (LUT) method. Var-
ious modifications of the CORDIC algorithm allow to speed
up the operation of hardware in edge computing devices. With
that context taken into consideration, this article presents a fast
and accurate square root floating point (SQRT FP) CORDIC
function which can be implemented in field programmable gate
arrays (FPGAs). The proposed algorithm offers low-complexity,
decent accuracy and speed, and is sufficient for digital signal
processing (DSP) applications, such as digital filters, accelera-
tors for neural networks, machine learning and computer vision
applications, and intelligent robotic systems.

Keywords computer vision, CORDIC algorithm, FPGA, numer-
ical methods, reconfigurable computing systems

1. Introduction

The current methods by means of which the square root
(SQRT) calculation approach is implemented in hardware
continue to suffer from numerous drawbacks that limit their
practical use. Software developers and researchers of many
real-time DSP applications face challenges related to compu-
tational accuracy and speed [1], as well as optimization of
hardware resources required to run square root algorithms [2].
In the Newton-Raphson numerical method that is common-
ly used for computing the square root, the precision level
depends on the initial guess and requires significant compu-
tational resources, due to its reliance on iterative multiplica-
tion [3], [4].
Alternative multiplicative methods have a quadratic type
of convergence, and thus may speed up the computation
process. These methods perform a number of iterations of
a fused multiply-add (FMA) operation, with the latency of
a single FMA being in the range of 3 and 6 cycles [5]. For
a low-precision SQRT computation, look-up table or low-
degree polynomial approximation methods can be applied [1].
However, high demand for FPGA resources is an additional
disadvantage here. This problem has been partially solved

by iterative or digit-recurrence methods presented in [6], [7],
which are characterized by linear convergence.
In order to overcome the abovementioned issues, the coor-
dinate rotation digital computer (CORDIC) algorithm was
proposed [8]–[10].
The main drawback of the CORDIC method [11], [12] is
its low speed resulting from the use of linear convergence,
where only one correct bit of the result per iteration is given.
The number of iterations depends on the precision of the
required data. Therefore, latency is a main research problem,
especially when the algorithm operates on large bit-width
vectors [13].
To simplify hardware implementation, a CORDIC method
with angle recoding has been proposed in [7], [10], reduc-
ing computational complexity to two iteration equations only.
Other articles focus on improving the speed of the method, i.e.
reducing the number of iterations, proposing hybrid structures
that use, sequentially, three different methods: table-based +
CORDIC + piece-wise linear multiplication (linear approxi-
mation) [5], [14]–[17].
Another proposal to accelerate the CORDIC algorithm con-
sisted in the introduction of the pre-rotation technique [13].
Moreover, this algorithm can be executed in various forms:
classical [12], using higher-order iterative formulas [16], [18],
without recoding [13], and with angle recoding [19], [20].
The simplest solution – in terms of hardware implementation
– is CORDIC with angle recoding [10], [18]. However, a sig-
nificant drawback lies in the large amounts of memory (LUT
type) required for large values ofm (a table of size not less
than 2m3 ×m bits is needed). Furthermore, the output multi-
pliers are implemented in the {-1, 1} basis, preventing the
use of multipliers that are part of the DSP blocks in modern
FPGA devices.
The CORDIC algorithm is widely applied to calculate various
mathematical functions, including SQRT [4], [10], [21]. An
example of the application of the new numerical method for
SQRT calculations is presented in [22], where an efficient
design of a Kalman filter is implemented. The authors plan
to apply the CORDIC algorithm to improve digital filters for
telecommunications applications. Thus, we have the intention
of developing further effective methods for the calculation
of trigonometric functions using the CORDIC style. The
said algorithm can also be relied upon to calculate nonlinear

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 21

https://doi.org/10.26636/jtit.2025.1.1950
https://creativecommons.org/licenses/by/4.0/

Mariusz Węgrzyn, Stepan Voytusik, and Nataliia Gavkalova

functions, such as th(x), which are useful for implementing
neural networks. Its other applications include low-resource
microprocessors without the floating point unit (FPU), as our
algorithm converts from floats to integers and all calculations
are executed on integer-type numbers, with the result them
being converted back to the floating point type.
The goal of this work is to propose a new efficient SQRT
floating point type CORDIC algorithm with low latency and
moderate FPGA resource requirements. Our proposal utilizes
an original methodology of converting floating numbers to
integers and vice versa, in order to optimize the use of FPGA
hardware resources and to improve calculation efficiency.
The article is organized as follows. Section 2 reviews various
methodologies and hardware implementations of square root
algorithms. Section 3 introduces the proposed methodology.
Section 4 introduces the proposed algorithm and describes
the details of the FPGA implementation, while Section 5
presents and discusses the results achieved with the use of
our solution. Section 6 presents the conclusions.

2. Related Works

The CORDIC concept was introduced by Volder in 1959
[12], then the solution was extended to calculate elementary
functions, including the square root [16]. CORDIC owes its
low hardware resource-related requirements to the fact that
one iteration may be performed using basic shift and addition
commands. A low-complex design methodology is introduced
in [4] for the computation of square root (

√
x) and division

(xz) using circular CORDIC reuse. This method reduces the
area overhead for biomedical applications. Here, the square
root is computed using the derivative Newton-Raphson (NR)
formula, and a technique consisting in dividing input x into
different segments is applied. Solutions [4], [23] also perform
micro-rotations to predict rotation directions.
Paper [23] proposed a pipeline-parallel unified CORDIC ar-
chitecture to perform square root computing and several basic
functions using floating point numbers. Article [24] proposes
a complex square root computation method independent of
angle in the CORDIC style.
Article [11] presents the advantages of the square root
CORDIC radix-10 FPGA implementation method. The solu-
tion covers both fixed- and floating-point versions with differ-
ent reconfigurable number of digits, thus different precision
versions – according to IEEE 754-2008 standard – are imple-
mented. Therefore, the number of iterations is configurable
(13–25). The authors of [25] redesigned the core that employs
an iterative non-restoring algorithm that converges closer to
the result after every iteration. Articles [9], [11], [18], [26]
described the advantages and disadvantages of the various
radix-2, radix-4 and radix-10 CORDIC algorithms. These so-
lutions reduce the number of iterations and thus can speed up
the calculation process [16], [18].
Article [21] proposes the radix-4 CORDIC algorithm for
computing roots and powers of various orders. This solution
is divided into three phases, where each stage is completed by

a different class of the modified radix-4 CORDIC algorithm.
The degree of complexity is reduced by precomputing the
scale factor for initial iterations and by employing scaling-free
rotations for later iterations. Other papers [27], [28] describe
precomputation of rotation direction to achieve a latency
improvement, using the radix-4 architecture.
The CORDIC IP core v6.0 developed by Xilinx [29] imple-
ments a generalized CORDIC algorithm to iteratively solve
trigonometric equations, hyperbolic and square root equa-
tions, etc. There are two architectural configurations available:
a fully parallel configuration with single-cycle data through-
put at the higher expense of silicon die size, and a word serial
implementation with multiple-cycle throughput, but with the
advantage of low silicon usage.
Alternatively, paper [10] incorporates the square root function
into the existing FP multiplication/division fused unit to
reduce the hardware resources required. The Taylor series
expansion algorithm with powering units, which exhibits the
highest performance, was implemented in the hardware.
A parallel CORDIC core with N bit output width has a la-
tency of N cycles and produces a new output every cycle.
A word serial CORDIC core with N bit output width has
a latency of N cycles and produces a new output every N
cycles. In practice, the CORDIC square root function of the
Xilinx IP core generator can be useful for the estimation of
the DC motor rotor flux [10], [28]. For FPGA implementa-
tion, tools provided by FPGA providers are presented in [13].
For example, the Xilinx System Generator (XSG) simulation
tool was applied that can easily make the direct translation
into hardware of control algorithms without knowing any
hardware description language (HDL) for implementing solu-
tions developed in [13]. This is a high-level tool for designing
high-performance DSP systems in the Simulink environment.
Similarly, our methodology uses the Xilinx Vitis HLS tool
to optimally translate the proposed algorithm into HDL C
language. In such a method, the hardware implementation is
optimal for any FPGA chips and knowledge of the details of
the FPGA architecture is not required.

3. Description of the Proposed Method

In this Section, the application of the CORDIC algorithm
for calculating the floating-point square root is described
and the open-source code is provided. All known CORDIC
square root implementations have been used for integer or
fixed point [8]–[10], [14], [26] calculations. The proposed al-
gorithm effectively combines such techniques as convert fpx
into an integer i, splitting integer i into a mantissa and an ex-
ponent, using the fast bitwise masking operation & (instead
of the slow frexpf), combining the converted mantissas and
exponents of the result into one number using the same fast
bitwise operation (instead of slow ldexpf). It should also be
noted that the high accuracy and speed of our algorithm are
obtained without the use of the pace-hindering correct round-
ing operation. Other advantages include the lack of division
operations and the presence of only one multiplication opera-

22
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025

FPGA-based Low Latency Square Root CORDIC Algorithm

! i2 ! i2
+ +

+++

– i1 ± di1 – i2 ± di2

di1=i2>>j di2=i1>>j

j=2 ... 12, if (j==4) 2× executed: j=2 ... 12, if (j==4) 2× executed:

i1

i1

i1

i2

i2

i2

i1–di1 i2–di2

di2 = i1 >> 1 di2 = i1 >> 1

<< 3 << 3

l_m l_mi_m>=0x00800000 i_m>=0x00800000i_m <0x00800000 i_m<0x00800000

8388608 8388608i_m

i_m

i_m<<1

25165824

i_m0<<3

i_m0

23 digits of initial mantissa are reserved:
i_m0 = i & 0x007FFFFF;

and normalized due to the input range
of x(i_m):

i1 = (i_m + const.) << a;
i2 = (i_m0) << a;

The x value of the oat type is read
as a sequence of bits, which we then write

as an integer:

 i = *(*)&x; int int

Vector is rotated

Scaling the obtained result:
I1 = (int)((40516878 * (int64_t)i1) >> 23

Calculated Mantissa
i = (i1 >> 6) – 0x800000;

 8 bits for exponent are reserved:
 I_exp = i_exp & 0x7f800000;
Mantissa is combined together
with exponent into one number:

I_exp |= I;
All the result is converted back into oat:

y = *(oat*) & i_exp;

Fig. 1. Low-latency square root CORDIC algorithm.

tion to scale the result. Moreover, the algorithm achieves the
expected accuracy in the entire range of normalized floating-
point numbers. In this article, we use the following approach
to calculate the square root of floating-point numbers [30].
IEEE-754 floating point formats are as follows:

−1Sx ·Mx · 2ex−bias. (1)

where, for the square root function, Sx = 0.
Therefore, it is worth noting that we will use exclusively a bi-
ased exponent ex, and mantissaMx ∈ [1, 2). For computing
a square root, we have to represent argument x by two sepa-
rate numbers – exponent and mantissa. Next, the operation
presented in Eq. (2) or Eq. (3) is performed:

√
Mx 2

ex−bias
2 , if ex − bias is an even number (2)

and:
√
2Mx 2

ex−bias−1
2

=
√
2
√
Mx 2

ex−bias−1
2 , if ex − bias is an odd number .

(3)

From these formulas, one may conclude that the mantissa must
be placed in two intervalsMx ∈ [1, 2) and 2Mx ∈ [2, 4). It
can be seen from the above equations that it is necessary to
calculate the square root of mantissaMx. For this reason, we
suggest using the CORDIC algorithm. The classical CORDIC
algorithm for calculating the square root gives the following
equations (vector mode):

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 23

Mariusz Węgrzyn, Stepan Voytusik, and Nataliia Gavkalova

xi+1 = xi − σi yi 2−i (4)

yi+1 = yi − σi xi 2−i

x0 =Mx + 0.25, y0 =Mx − 0.25

Mx ∈ [0.03, 2.33]

√
Mx ≈ xm+1P ′

where P ′ is the scaling factor, taking into account the rep-
etitions of some iterations (4.4 and 13.13 for example). We
have observed that from Eq. (5). It is necessary to expand the
range of values toMx ∈ [1, 4) instead of 0.03–2.33. There-
fore, we proposed to change the constant from 0.25 to 1.0. In
this case, we have:

x0 =Mx + 1, y0 =Mx − 1 , (5)

√
4Mx ≈ 2xm+1 P ′ .

In the proposed algorithm, all conversions must be performed
in the integer format, as required by CORDIC. The main
steps of the new algorithm are presented in Fig. 1 and are
summarized as follows:
1) Input argument x is given as a single precision floating

point number.
2) x is converted into integer i.
3) Using 0x7f800000 and 0x00ffffffmasks, i is split into

two parts: biased exponent i_exp and im – the fractional
part of the mantissa with the youngest bit of the biased
exponent acting as the oldest bit of the mantissa. This bit
indicates which range of the mantissa is considered:Mx
or 2Mx. If im 0x00800000, then the mantissa is in the
[1, 2) range, otherwise in the [2, 4) range.

4) This allows us to set the appropriate values of the exponent
of the result – see Eqs. (2) and (3).

5) The initial values of numbers i1 and i2 are introduced,
corresponding to variables x0 and y0 of the CORDIC
algorithm for SQRT calculation; see Eq. (5). Depending
on the range of the mantissa,Mx or 2Mx, these are the
initial values of x0 and y0. These constants are the newly
proposed elements of the presented algorithm.

6) In addition, in the CORDIC algorithm, three additional
bits are used to increase the accuracy of calculating the
square root of the mantissa, up to the available 23-24 bits
of mantissa available in float-type numbers.

7) The result obtained is scaled by integer multiplication:
(int)((40516878 ∗ (int64t)i1) >> 23).

4. Proposed Algorithm
The aforementioned methodology is implemented in the
algorithm presented in Fig. 2.

float Sqrt_Cordic_1 (float x)

{ float y;
 int32_t i_m, i_exp;
 int32_t i, i1, i2, i_m0, i_m1, di1, di2,j;
 i = *(int*)&x;
 i_exp = i & 0x7f800000;
 i_m = i & 0x00ffffff;
 i_m0 = i & 0x007fffff;
 if (i_m>= 0x00800000){
 i1=(i_m+8388608)<<3; i2=i_m0<<3}
 else{i1=((i_m<<1)+25165824)<<3;
 i2=((i_m<<1)+ 8388608)<<3;}
 di1 = (i2 >> 1); di2 = (i1 >> 1);
 i1 = i1 - di1; i2 = i2 - di2;
 for (j = 2; j <=12; j++)
 {di1 = (i2 >> j); di2 = (i1 >> j);
 if (i2 >= 0) { i1 = i1 - di1; i2 = i2 - di2;}
 else { i1=i1+di1; i2=i2+di2; }
 if (j= =4){ di1 = (i2 >> j); di2 = (i1 >> j);
 if (i2 >= 0) { i1 = i1 - di1; i2 = i2 - di2;}
 else { i1=i1+di1; i2=i2+di2; }
 }
 }
i1 = (int)((40516878* (int64_t)i1)>> 23) ;
i=(i1>>6)- 8388608;
i_exp=(i_exp + 0x3f800000)>>1;
i_exp = i_exp &0x7f800000;
i_exp |= i;
y = *(float*)&i_exp;
 return y;
}

Fig. 2. Square root floating-point function algorithm.

The proposed floating point CORDIC function was imple-
mented on several families of FPGAs. For this purpose, the
Xilinx Vitis HLS automatic synthesis and implementation
software were used, generating Verilog code at the RTL lev-
el. The project was implemented by utilizing basic FPGA
resources, such as LUT-based logic, multipliers from DSP
blocks, flip-flops (FFs), etc.
The algorithm generates results from 2 clock cycles for the
fastest FPGAs (i.e. Versal, Virtex-7 Ultra Plus, Kintex-7 Ultra
Plus), up to 8 clocks for the slowest FPGA Spartan-7. The
CORDIC function written in C, as presented in this paper, is
easily implementable on FPGA chips and requires a small
amount of resources.
The Xilinx FPGA 7 family is optimized for low-power ap-
plications requiring serial transceivers, fast DSP and high
logic throughput. The logic is based on real 6-input LUT
technology, configurable as distributed memory. DSP slices
are designed with a 25×18 multiplier, a 48-bit accumula-
tor, and a pre-adder for high performance filtering, including
optimized symmetric coefficient filtering [31].
The Artix-7 family includes up to 215 K logic cells, 13 Mb
RAM block, and 740 DSP slices. The more sophisticated
families, i.e. Kintex-7 and Virtex 7, include: in the case of
Kintex-7 – up to 478 K logic cells, 34 Mb RAM block, and
1920 DSP slices. In the case of Virtex-7 – up to 1955 K logic
cells, 68 Mb RAM block, and 3600 DSP slices.
The AMD Xilinx Zynq UltraScale+ MPSoC family is based
on the UltraScale MPSoC architecture. This series integrates
a 64-bit quad-core or dual-core Arm Cortex-A53 and dual-
core Arm Cortex-R5F-based processing system (PS) and
Xilinx programmable logic (PL) UltraScale architecture in

24
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025

FPGA-based Low Latency Square Root CORDIC Algorithm

Tab. 1. Results of logic synthesis of SQRT FP CORDIC using Xilinx Vitis HLS tool.

FPGA T [ns] No. of
cycles No. of DSP No. of LUT LUT usage No. of FF FFs usage

Artix-7 70 7 3 2878 6.7% 642 35.96%
Kintex-7 50 5 3 2870 7.00% 493 0.60%

Kintex-7U 40 4 2 2871 0.43% 395 0.03%
Kintex-7 UP 20 2 2 2860 1.76% 252 0.08%

Spartan-7 80 8 3 2886 36.06% 697 4.63%
Virtex-7 50 5 3 2870 1.40% 438 0.11%

Virtex UP 20 2 2 2860 0.72% 155 0.02%
Zynq-7000 70 7 3 2878 16.35% 607 1.72%

ZynqUP 30 3 2 2866 3.26% 269 0.15%
Versal 20 2 2 2698 2.40% 230 0.01%

Tab. 2. Results of FPGA implementation of SQRT FP CORDIC by Xilinx Vitis HLS.

FPGA T [ns] No. of
cycles

No. of
DSP DSP usage No. of

LUT
LUT
usage No. of FF FF usage

Artix-7 70 7 4 8.88% 982 12.28% 416 2.60%
Kintex-7 50 5 4 1.70% 862 2.10% 262 0.32%

Kintex-7U 40 4 2 0.04% 862 0.13% 210 0.02%
Kintex-7 UP 20 2 2 0.15% 1042 0.64% 199 0.06%

Spartan-7 80 8 4 20.00% 976 12.2% 464 2.9%
Virtex-7 50 5 3 0.27% 861 0.42% 232 0.05%

Virtex UP 20 2 2 0.09% 858 0.22% 82 0.01%
Zynq-7000 70 7 4 5.0% 1099 6.24% 468 1.33%

ZynqUP 30 3 2 0.27% 905 1.03% 136 0.08%
Versal 20 2 2 0.1% 810 0.72% 122 0.007%

a single device. Also included are on-chip memory, multiport
external memory interfaces, and a large set of peripheral
connectivity interfaces. The Zynq UltraScale+ MPSoC family
includes up to 1.14 M logic cells, in particular 522 K CLB
LUT, 1 M CLB flip-flops, 984 Mb RAM block, and 2 M DSP
slices [32].

5. Achieved Results

The maximum negative and positive errors achieved by the
proposed method are –1.7001956E–07 and 1.0053241E–07,
respectively. Additionally, we can observe four special cases
for normalized numbers:
– zero x = 0.0; y = 7.6664669522108749E–20,
– min x = 1.175494210692441075487029E–38; y =
1.0842021078620191E–19,

– max x = 3.402823466385288598117042E+38, y =
1.8446742974197924E+19,

– x =∞; y = 1.8446744073709552E+19.

We checked the relative errors over the full range of nor-
malized single-precision floating-point numbers using the
nextafterf() function for the C++ code of our algorithm,
comparing the results with the sqrt function of the cmath li-
brary. nextafterf(a,b) is a function defined in the C++ cmath
library. Return the next representable value after x in the y
direction. The relative error was calculated as:

dr = (double)
y√
x
− 1 .

The y results from the C++ code were compared with the
results obtained in FPGA – the integer number results were
always the same.
Table 1 presents the execution time of the proposed square root
floating point (FP) CORDIC algorithm and FPGA resources
utilized after logical synthesis on the chips. Table 2 collects
the same results after FPGA implementation by means of
the Xilinx Vitis HLS tool that provides optimization of the
resources used.
First, one of the widely used FPGA Artix-7 chips was chosen.
The clock frequency was set to a default value of 100 MHz,

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 25

Mariusz Węgrzyn, Stepan Voytusik, and Nataliia Gavkalova

because many other FPGAs can operate at this frequency.
This makes it easier to compare the achievements of FPGAs
originating from different families. The execution time and
the resources used after the logical synthesis using the Xilinx
Vitis tool for Artix-7 are presented in Tab. 1. Our floating
point CORDIC function required 7 clock cycles to generate
output, i.e. 70 ns.
Implementing the proposed function on the smallest available
chip of the Artix-7 family (xc7a12t-cpg238-3) required
4 (8.8%) built-in DSP blocks, 982 (12.28%) LUTs, and 416
(2.6%) flip-flops. Xilinx does not disclose the results of the
own implementation of the CORDIC v. 6.0 IP on Artix-7
FPGAs [29].
Next, the Kintex-7 FPGA was tested. The proposed function
took 5 clock cycles (50 ns) to complete. Implementation
of the algorithm on the smallest chip of the Kintex-7 family
(xc7k70t-fbv676-3) required 4 (1.7%) built-in DSP blocks,
862 (2.10%) LUTs, and 262 (0.32%) flip-flops. According
to Xilinx [29], their square root in CORDIC IP occupied
2184 LUTs, and 1328 flip-flops on the Kintex-7 chip, which
is approximately 2.5 times more LUTs, and 5 times more
flip-flops than in the proposed solution.
Furthermore, we implemented the algorithm on the Kintex-7
Ultra (Kintex-7U) FPGA. The execution took 4 clock cycles
(40 ns) on the smallest chip of the Kintex-7 Ultra family
(xcku115-flva1517-3-e) and required 2 (0.04%) built-
in DSP blocks, 862 (0.13%) LUTs, and 210 (0.02%) FFs.
According to Xilinx [29], their SQRT function occupied
2278 LUTs and 1336 flip-flops, which is approximately three
times more than for the proposed solution.
The last FPGA variant of the Kintex-7 family was Kintex-7
Ultra Plus (Kintex-7 UP). In this case, the algorithm was
executed in 2 clock cycles (20 ns) only. It means that imple-
mentation on the smallest chip of the Kintex-7 Ultra Plus
family (xcku3p-sfvb784-3-e) required 2 (0.15%) built-in
DSP blocks, 1042 (0.64%) LUTs, and 199 (0.06%) FFs. The
Xilinx solution uses 2208 LUTs and 1334 FFs. This is al-
so approximately 2.12 times LUTs more and 6.7 times more
flip-flops than for the proposed solution.
Tables 1 and 2 illustrate that the proposed function imple-
mented on different FPGAs of the Kintex-7 family occupied
a similar amount of resources.
Moreover, we also tested the Spartan-7 FPGA
(xc7s15ftgb196-2), a chip with a slightly different
and older architecture when compared to the previous fam-
ily. In this case, the proposed function achieved the worst
result of 8 clock cycles (80 ns), using a small portion of
the resources available, i.e. 4 (20%) built-in DSP blocks,
976 (12.2%) LUTs, and 464 (2.9%) flip-flops. This result is
a consequence of the lower quantity of resources in this chip:
20 DSP, 8000 LUTs, and 16000 FFs. Xilinx does not dis-
close the results achieved while implementing CORDIC v.
6.0 IP on Spartan-7 FPGAs [29].
The Virtex-7 series FPGA is optimized for the best per-
formance and capacity and is used in the verification
xc7vx330t-ffv1761-3 chip, which offers abundant re-

Fig. 3. Results of the synthesis of Xilinx Vitis HLS on: Kintex Ultra
Plus FPGA (top) and Zynq Ultra Plus FPGA (bottom).

Fig. 4. Results of implementation of Xilinx Vitis HLS on Kintex
Ultra Plus FPGA (left) and on Zynq Ultra Plus FPGA (right).

sources and achieves top performance in the Xilinx FPGA
family. The execution time of the proposed function was 5
clock cycles (50 ns) with the usage of only 3 (0.27%) built-in
DSP blocks, 861 (0.42%) LUTs, and 232 (0.05%) FFs. Ac-
cording to Xilinx [29], their SQRT solution occupied 2177
LUTs and 1328 FFs, which is approximately 2.5 times more
LUTs, and 5.7 times more FFs than in the case of our solution.
The Virtex-7 Ultra Plus (xcvu3pCIV-ffvc1517-3-e) algo-
rithm took only two clock cycles (20 ns) to complete. The
function occupies merely 2 DSP blocks (0.09%), a low num-
ber of 858 LUTs (0.22%), and 82 flip-flops (0.01%). Com-
pared to Xilinx [29], their SQRT IP occupied 2242 LUTs and
1342 flip flops, which is approximately 2.6 times more LUTs
and 16 times more FFs than in the proposed solution.
On Zynq Ultra Plus (xczu4eg-fbvb900-3-e) FPGA the al-
gorithm required only 2 built-in DSP blocks (0.27%), 905
LUTs (1.03%), and 136 FFs (0.08%). The function was exe-
cuted within 3 clock cycles (30 ns), while Xilinx [29] SQRT
occupied 2177 LUTs, and 1330 FFs, which is about 2.4 times
more LUTs, and 9.7 times more flip-flops compared to pro-
posal.
We also tested an older version of the Zynq-7000
(xc7z010-clg225-3) FPGA chip, with the execution tak-
ing 7 clock cycles (70 ns) and using 4 built-in DSP blocks
(5%), 1099 LUTs (6.24%) and 468 flip-flops (1.33%). Com-
pared to Xilinx [29], their SQRT occupied 2177 LUTs and

26
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025

FPGA-based Low Latency Square Root CORDIC Algorithm

1330 flip-flops, which is approximately 2 times more LUTs,
and 2.8 times more FFs than in our proposal.
Finally, we implemented the algorithm in the most advanced
chip family, namely the Versal.
The implementation required a negligible
amount of resources of the smallest Versal chip
(xcvc1902-viva1596-3HP-e-S), i.e. only 2 DSP
blocks (0.1%), 810 (only 0.72%) LUTs, and 122 FFs
(0.007% of all FFs available). The algorithm required only 2
clock cycles (20 ns) to complete. In comparison to Xilinx,
their solution occupied 1968 LUTs and 1454 FFs in this FP-
GA, which is approximately 2.43 times more LUTs and 11.9
times more flip-flops than in the case of our proposal. All the
results of logic synthesis performed using the Xilinx Vitis
HLS software are presented in Tab. 1, while Tab. 2 illustrates
the results of the FPGA implementations of the proposed
CORDIC function.
These results have been optimized due to the architectural
details of each selected FPGA. Details concerning the time of
the signal’s propagation through a CLB for the basic families
of FPGAs, retrieved from Xilinx data sheets, are presented in
Tab. 3. Data on the operating speed of FPGAs utilized in the
experiments highlights the time efficiency of the proposed
algorithm in the context of its complexity.
Example results of Xilinx Vitis HLS synthesis on Kintex
Ultra Plus FPGA are shown in Fig. 3, while results of Xilinx
Vitis HLS implementation on Kintex Ultra Plus FPGA are
presented in Fig. 4.
The usage of FPGA resources required to implement
CORDIC-based modules usually exceeds 1100 LUTs and
1000 flip-flops. Our solution achieved a result that was 20%
better. The CORDIC structure [33] was of the combined iter-
ative three-stage or multistage variety and required slightly
more resources than our solutions inside the Kintex-7 FP-
GA. However, only the sum of LUTs and flip-flops together is
given, and unlike our algorithm, those need ROM memory.
The execution time ranges from 60 ns to 190 ns, meaning it
is longer than the time achieved by us (50 ns on Kintex-7).
An FPGA implementation of the CORDIC floating point
SQRT performed on Virtex-7 in the iterative pipeline-parallel

Tab. 3. Signal propagation time through configurable logic block.

FPGA

A
rti

x-
7

K
in

te
x-

7

Sp
ar

ta
n-

7

V
irt

ex
-7

Zy
nq

-7
00

0

Combinatorial
[ns] 0.94 0.58 1.05 0.58 0.94

Sequential
[ns] 0.47 0.32 0.53 0.32 0.47

CLB set and
hold [ns] 0.59 0.36 0.66 0.36 0.59

Set/reset [ns] 0.53 0.52 0.78 0.52 0.53
DSP I/O [ns] 4.06 3.44 4.65 3.44 4.06

version, as presented in [23], occupied 708 LUTs. However, it
required weighting the scale factors by applying an additional
25-bit fixed-time expensive multiplication to generate final
results. The implementation of the complex SQRT method
proposed in [24] on the Virtex-6 FPGA occupied 6852 LUTs
and generated a latency of 38 clock cycles. The square root
calculated on the Virtex-7 Ultra Plus FPGA by the Radix-10
CORDIC algorithm presented in [11] required from 1193 (7
digit version) to 5796 LUTs (34 digits version) and from 339
(7 digits) up to 1481 (34 digits) flip-flops, depending on the
number of precision digits. Latency ranged from 10 clock
cycles for 7 digits to 37 clock cycles. It was the worst result
when compared to the application of our proposal on the same
FPGA family (2 clock cycles).
Our solution also consumed approximately 25% less FP-
GA resources. As a further example, a faster radix-4 root
CORDIC algorithm with a 40-bit precision level required
9324 LUTs when implemented on the Virtex-6 FPGA [21].
This is a hyperbolic CORDIC utilizing Taylor’s approxima-
tion. The concurrent radix-4 CORDIC solution proposed
in [26] was implemented in the Spartan-6 FPGA and occu-
pied 6840 LUTs on this FPFA, with a latency of 68 ns. For
the older FPGA version (Spartan-3E), 4508 LUTs were used
and latency equaled 80 ns.
Despite the lower amount of hardware resources required,
the relatively high latency of [10] was achieved for his high-
performance SQRT circuit based on the Taylor series. The
authors of [25] focused on maximizing operating frequency
as well as reducing static and dynamic power levels. However,
their implementation of the FP SQRT occupied, for instance,
804 basic and 971 enhanced LUTs of the Virtex-5 FPGA.
Our result of 861 LUTs achieved on the Virtex-7 FPGA ranks
us in the middle of their range.
One may notice that sophisticated solutions require similar
to proposed bit of precision amount of FPGA resources
and a higher number of clock cycles to complete specific
functions.
Implementation of fixed-point SQRT CORDIC solutions is
usually more frequent in FPGAs. Therefore, it is easier to
find many more publications about fixed-point algorithms
implemented in FPGAs. However, the proposed FP solution
often achieves a lower latency level than many of its fixed-
point counterparts, displaying a similar or lower demand for
FPGA resources.

6. Conclusions

In this article, a new algorithm is presented for CORDIC
square root computation for FP numbers. The original
methodology of converting floating numbers to integers and
back allows to optimize the usage of FPGA hardware re-
sources and lowers the efficiency of the calculation. We
achieved a very short computation time of two clock cy-
cles on Ultra Scale Plus Xilinx FPGAs from the Kintex-7 and
Virtex-7 series. The same result was achieved on the Versal
FPGA. The usage of FPGA resources by the proposed solu-

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025 27

Mariusz Węgrzyn, Stepan Voytusik, and Nataliia Gavkalova

tion is similar to or lower than that of the more sophisticated
optimization methods presented in the literature.
The authors’ contribution to the field can be summarized as
follows:
• FPGA floating point CORDIC SQRT circuit for normalized

numbers in the single precision IEEE754 format,
• Maximum relative error of 1.7E–7,
• Relatively simple theory, easily implementable on FPGAs,
• Low average implementation latency on widespread FP-

GAs,
• Very low implementation latency on Ultra Plus Families

of FPGAs,
• No division operation, only one integer multiplication

operation (to scale the result),
• Decent accuracy over the entire range of normalized FP

numbers,
• Lower or similar utilization of FPGA resources compared

with other solutions.
Our future research will focus on methods relied upon to
perform fixed-point CORDIC computations of several basic
functions. We currently work on a new approach to angle
recoding allowing to flexibly adjust the memory table size
and the number of CORDIC iterations.

References
[1] L. Moroz, V. Samotyy, M. Wegrzyn, and U. Dzelendzyak, “Efficient

Floating-point Square Root and Reciprocal Square Root Algorithms”,
11th IEEE International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications,
Cracow, Poland, 2021 (https://doi.org/10.1109/IDAACS5328
8.2021.9660872).

[2] A. Hasnat et al., “A Fast FPGA Based Architecture for Computation
of Square Root and Inverse Square Root”, Devices for Integrated
Circuit (DevIC), Kalyani, India, 2017 (https://doi.org/10.110
9/DEVIC.2017.8073975).

[3] Z. Kokosinski et al., “Fast and Accurate Approximation Algorithms
Computing Floating Point Square Root”, Numerical Algorithms, 2024
(https://doi.org/10.1007/s11075-024-01932-7).

[4] S. Mopuri, S. Bhardwaj, and A. Acharyya, “Coordinate Rotation-based
Design Methodology for Square Root and Division Computation”,
IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
66, pp. 1227–1231, 2019 (https://doi.org/10.1109/TCSII.20
18.2878599).

[5] R. Shukla and K.C. Ray, “Low Latency Hybrid CORDIC Algorithm”,
IEEE Transactions on Computers, vol. 63, pp. 3066–3078, 2014
(https://doi.org/10.1109/TC.2013.173).

[6] M.D. Ercegovac and T. Lang, Division and Square Root Digit-
recurrence Algorithms and Implementations, Norwell: Kluwer Pub-
lishers, 240 p., 1994 (ISBN 9780792394389).

[7] Y.H. Hu and S. Naganathan, “An Angle Recoding Method for CORDIC
Algorithm Implementation”, IEEE Transactions on Computers, vol.
42, pp. 74–79, 1993 (https://doi.org/10.1109/12.192217).

[8] E. Antelo, T. Lang, and J. Bruguera, “Very-high Radix Circular
CORDIC: Vectoring and Rotation/vectoring”, IEEE Transactions on
Computers, vol. 49, pp. 727–739, 2000 (https://doi.org/10.1
109/12.863043).

[9] E. Antelo, J. Villalba, J.D. Bruguera, and E. Zapata, “High Perfor-
mance Rotation Architectures Based on Radix-4 CORDIC Algo-

rithm”, IEEE Transactions on Computers, vol. 46, pp. 855–870, 1997
(https://doi.org/10.1109/12.609275).

[10] T.-J. Kwon and J. Draper, “Floating-Point Division and Square Root
Implementation using a Taylor-series Expansion Algorithm with
Reduced Look-up Tables”, 2008 51st Midwest Symposium on Circuits
and System, Knoxville, USA, 2008 (https://doi.org/10.1109/
MWSCAS.2008.4616959).

[11] Martín Vázquez, Marcelo Tosini, Lucas Leiva., “Radix-10 Restoring
Square Root for 6-input LUTs Programmable Devices”, Circuits
Systems and Signal Processing, vol. 40, pp. 2335–2360, 2021 (https:
//doi.org/10.1007/s00034-020-01571-y).

[12] J.E. Volder, “The CORDIC Trigonometric Computing Technique”,
IEEE Transactions on Electronic Computers, vol. EC-8, no. 3, pp.
330–334, 1959 (https://doi.org/10.1109/TEC.1959.522269
3).

[13] J.-G. Mailloux, S. Simard, and R. Beguenane, “FPGA Implementation
of Induction Motor Vector Control using Xilinx System Generator”,
6th WSEAS International Conference on Circuits, Systems, Electron-
ics, Control & Signal Processing, Cairo, Egypt, 2007.

[14] M. Garrido, P. Källström, M. Kumm, and O. Gustafsson, “CORDIC
II: A New Improved CORDIC Algorithm”, IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 63, pp. 186–190, 2016
(https://doi.org/10.1109/TCSII.2015.2483422).

[15] S. Srinivasan et al., “Split-path Fused Floating Point Multiply Accu-
mulate (FPMAC)”, 21th IEEE Symposium on Computer Arithmetic,
Austin, USA 2013 (https://doi.org/10.1109/ARITH.2013.3
2).

[16] J.S. Walther, “A Unified Algorithm for Elementary Functions”, Proc.
of AFIPS Joint Computer Conferences, vol. 38, pp. 385–389, 1971
(https://doi.org/10.1145/1478786.1478840).

[17] S. Wang, V. Piuri, and E.E. Swartzlander, “Hybrid CORDIC Al-
gorithms”, IEEE Transactions on Computers, vol. 46, no. 11, pp.
1202–1207, 1997 (https://doi.org/10.1109/12.644295).

[18] P.-T. Vo-Thi, T.-T. Hoang, C.-K. Pham, and D.-H. Le, “A Floating-
point FFT Twiddle Factor Implementation Based on Adaptive An-
gle Recoding CORDIC”, 2017 International Conference on Recent
Advances in Signal Processing Telecommunications & Computing
(SigTelCom), Da Nang, Vietnam, 2017 (https://doi.org/10.110
9/SIGTELCOM.2017.7849789).

[19] A. Madisetti, A.Y. Kwentus, and A.N. Willson, “A 100 MHz, 16-b,
Direct Digital Frequency Synthesizer with 100-dBc Spurious-free
Dynamic Range”, IEEE Journal of Solid-State Circuits, vol. 34, no. 8,
pp. 1034–1043, 1999 (https://doi.org/10.1109/4.777100).

[20] D. Timmermann, H. Hahn, and B. Hosticka, “Low Latency Time
CORDIC Algorithms”, IEEE Transactions on Computers, vol. 41, pp.
1010–1015, 1992 (https://doi.org/10.1109/12.156543).

[21] M. Woźniak et al., “Radix 4 CORDIC Algorithm Based Low Latency
and Hardware Efficient VLSI Architecture for N th Root and N th
Power Computations”, Scientific Reports, vol. 13, art. no. 20918,
2023 (https://doi.org/10.1038/s41598-023-47890-3).

[22] R. Dutt and A. Acharyya, “Low-complexity Square-root Unscented
Kalman Filter”, Circuits, Systems, and Signal Processing, vol. 42, pp.
6900–6928, 2023 (https://doi.org/10.1007/s00034-023-02
437-9).

[23] B. Li et al., “A Unified Reconfigurable Architecture Based on CORDIC
Algorithm Floating-point Arithmetic”, 2017 International Conference
on Field Programmable Technology (ICFPT), Melbourne, Australia,
2017 (https://doi.org/10.1109/FPT.2017.8280166).

[24] S. Mopuri and A. Acharyya, “Low-complexity and High-speed Ar-
chitecture Design Methodology for Complex Square Root”, Cir-
cuits, Systems, and Signal Processing, vol. 40, pp. 5759–5772, 2021
(https://doi.org/10.1007/s00034-021-01738-1).

[25] S. Suresh, S.F. Beldianu, and S.G. Ziavras, “FPGA and ASIC Square
Root Designs for High Performance and Power Efficiency”, 2013
IEEE 24th International Conference on Application-Specific Systems,
Architectures and Processors, Washington, USA, 2013 (https:
//doi.org/10.1109/ASAP.2013.6567588).

28
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2025

https://doi.org/10.1109/IDAACS53288.2021.9660872
https://doi.org/10.1109/IDAACS53288.2021.9660872
https://doi.org/10.1109/DEVIC.2017.8073975
https://doi.org/10.1109/DEVIC.2017.8073975
https://doi.org/10.1007/s11075-024-01932-7
https://doi.org/10.1109/TCSII.2018.2878599
https://doi.org/10.1109/TCSII.2018.2878599
https://doi.org/10.1109/TC.2013.173
https://doi.org/10.1109/12.192217
https://doi.org/10.1109/12.863043
https://doi.org/10.1109/12.863043
https://doi.org/10.1109/12.609275
https://doi.org/10.1109/MWSCAS.2008.4616959
https://doi.org/10.1109/MWSCAS.2008.4616959
https://doi.org/10.1007/s00034-020-01571-y
https://doi.org/10.1007/s00034-020-01571-y
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TCSII.2015.2483422
https://doi.org/10.1109/ARITH.2013.32
https://doi.org/10.1109/ARITH.2013.32
https://doi.org/10.1145/1478786.1478840
https://doi.org/10.1109/12.644295
https://doi.org/10.1109/SIGTELCOM.2017.7849789
https://doi.org/10.1109/SIGTELCOM.2017.7849789
https://doi.org/10.1109/4.777100
https://doi.org/10.1109/12.156543
https://doi.org/10.1038/s41598-023-47890-3
https://doi.org/10.1007/s00034-023-02437-9
https://doi.org/10.1007/s00034-023-02437-9
https://doi.org/10.1109/FPT.2017.8280166
https://doi.org/10.1007/s00034-021-01738-1
https://doi.org/10.1109/ASAP.2013.6567588
https://doi.org/10.1109/ASAP.2013.6567588

FPGA-based Low Latency Square Root CORDIC Algorithm

[26] M.A. Darshan, “A High Performance and Low Latency FPGA Imple-
mentation of CORDIC Algorithm”, International Journal of Scientific
& Engineering Research, vol. 4, no. 8, 2013 (ISSN 22295518).

[27] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, “Para-CORDIC: Parallel
CORDIC Rotation Algorithm”, IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 51, pp. 1515–1524, 2004 (https:
//doi.org/10.1109/TCSI.2004.832734).

[28] T. Juang, “Low Latency Angle Recoding Methods for the Higher Bit-
width Parallel CORDIC Rotator Implementations”, IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 55, pp. 1139–1143,
2008 (https://doi.org/10.1109/TCSII.2008.2002566).

[29] Xilinx, “CORDIC v6.0 LogiCORE IP Product Guide”, 2021.
[30] F. de Dinechin, M. Joldes, B. Pasca, and G. Revy, “Multiplicative

Square Root Algorithms for FPGAs”, 2010 International Conference
on Field Programmable Logic and Applications, Milan, Italy, 2010
(https://doi.org/10.1109/FPL.2010.112).

[31] AMD Xilinx, “7 Series FPGAs Data Sheet: Overview DS180
(v2.6.1)”, product specification, 2020.

[32] AMD Xilinx, “Zynq UltraScale+ MPSoC Data Sheet: Overview
DS891 (v1.10)”, product specification, 2022.

[33] M. Qin et al., “A Low-latency RDP-CORDIC Algorithm for Real-time
Signal Processing of Edge Computing Devices in Smart Grid Cyber-
physical Systems”, Sensors, vol. 22, art. no. 7489, 2022 (https:
//doi.org/10.3390/s22197489).

Mariusz Węgrzyn, Ph.D.
Faculty of Electrical and Computer Engineering
https://orcid.org/0000-0002-6938-2954

E-mail: mariusz.wegrzyn@pk.edu.pl
Cracow University of Technology, Cracow, Poland
https://www.pk.edu.pl

Stepan Voytusik, D.Sc.
Department of Information Technology Security
https://orcid.org/0000-0003-4234-3303

E-mail: voytusik.b@gmail.com
Lviv Polytechnic National University, Lviv, Ukraine
https://lpnu.ua/en

Nataliia Gavkalova, Prof.
Faculty of Mechanical and Industrial Engineering
https://orcid.org/0000-0003-1208-9607

E-mail: nataliia.gavkalova@pw.edu.pl
Warsaw University of Technology, Warsaw, Poland
https://eng.pw.edu.pl

https://doi.org/10.1109/TCSI.2004.832734
https://doi.org/10.1109/TCSI.2004.832734
https://doi.org/10.1109/TCSII.2008.2002566
https://doi.org/10.1109/FPL.2010.112
https://doi.org/10.3390/s22197489
https://doi.org/10.3390/s22197489
https://orcid.org/0000-0002-6938-2954
https://www.pk.edu.pl
https://orcid.org/0000-0003-4234-3303
https://lpnu.ua/en
https://orcid.org/0000-0003-1208-9607
https://eng.pw.edu.pl

	Introduction
	Related Works
	Description of the Proposed Method
	Proposed Algorithm
	Achieved Results
	Conclusions

