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Abstract  Spectrum aggregation in 4G and 5G networks is
a technique used to combine multiple frequency bands to boost
communication performance. The cognitive radio feature im-
proves the ability to combine spectrum in LTE and 5G environ-
ments by enabling dynamic spectrum sensing. Spectrum sensing
is a major problem in spectrum aggregation due to the presence
of various types of interference, such as noise. Phase noise is an
issue due to its 1 MHz frequency offset experienced within 5G’s
28 GHz operating band, with the distorted signal generating
more spectrum sensing-related errors. To solve this problem,
the proposed work suggests an optimized deep learning-based
semantic spectrum sensing model using three sets of optimizers
(ResNet-50, DeepLab V3 and sand cat) offering a high detec-
tion accuracy of 99.7% with the optimized training parameter
of a high signal-to-noise ratio equaling 40 dB.

Keywords  cognitive radio, ResNet-50, sand cat optimizer, se-
mantic spectrum sensing, wireless sensor network

1. Introduction

A wireless communication transceiver using the cognitive ra-
dio (CR) concept identifies and utilizes unused radio channels
to make the best use of the available spectrum. This tech-
nique has been used to minimize interference and improve the
quality of service. In the United States, the Federal Commu-
nications Commission (FCC) and the National Telecommuni-
cations and Information Administration (NITA) allocate the
limited wireless RF spectrum to licensed users – an approach
that results in overcrowding or underutilization of the spec-
tra. Consequently, spectrum inefficiencies are experienced,
leading to reduced data transmission rates and lower service
quality levels.
CR networks are classified into two types: primary and sec-
ondary. A primary network consists of licensed users and
radio transmitters, while a secondary network shares the un-
used spectrum with the primary network. Identification of
channel occupancy in CR increases spectrum efficiency and
minimizes interference. It is achieved by spectrum sensing –
a technique allowing to determine whether specific frequency
bands are used or not.
Cognitive radio networks detect the presence of primary users
within specific frequency bands, allowing secondary users to
access the spectrum without creating any interference [1]. In

cognitive radio spectrum sensing, holes are defined as periods
in which primary-user signals are not detected, thus allowing
secondary users to access a given frequency band.
Two spectrum access modes may be distinguished: over-
lay and underlay. When principal users are not transmitting,
secondary users utilize the spectrum in the overlay mode.
Therefore, efficient spectrum access is required in the over-
lay mode to avoid interference from primary users [2]. In
the underlay mode, a secondary user transmits a signal si-
multaneously with a primary user, and the secondary user
must adjust its transmit power accordingly, taking account
the interference caused by the primary user [3].
Cognitive radio (CR) is a fundamental element of 4G/5G com-
munication systems. It enables multiple wireless and mobile
networks to operate efficiently, improves their performance
by utilizing the unlicensed spectrum, provides improved cov-
erage in rural areas by using overlay and underlay spectrum
access techniques, and facilitates the use of higher frequen-
cy bands, such as millimeter wave bands, in 5G wireless
communication [4].
Despite the increasing adoption of 5G seen in many countries,
coexistence of 4G and 5G networks is still quite common
due to the time required to build new telecommunications
infrastructure and the widespread availability of 4G networks.
5G networks are well suited for high data rates and low latency
applications. However, many rural areas still lack 5G coverage,
necessitating the continued use of both networks during the
transition period.
Spectrum aggregation (also known as carrier agreement)
allows several frequency bands to be combined into a single
channel to boost data rate, network capacity and, hence,
network performance. Spectrum aggregation enables network
operators to allocate the capacity of radio cells operating at
different frequencies, thus enhancing the end-user experience.
Spectrum aggregation, introduced in 3G networks, was lim-
ited to a 5 MHz bandwidth per carrier. In 4G LTE, each
carrier is aggregated with a 20 MHz bandwidth. Howev-
er, in 5G networks, carrier aggregation is supported at low-
and mid-frequencies (below 7 GHz), as well as at high-band
millimeter frequencies (above 24 GHz). In 5G, each carri-
er operates with a bandwidth of 100 MHz, being five times
wider than in 3G [5].
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Dynamic spectrum sharing between 4G LTE and 5G radio
signals is the main issue with spectrum aggregation. In spec-
trum sharing, 4G users cannot transfer carriers from LTE to
4G due to spectrum aggregation [6].
Phase noise is another problem that reduces performance.
During the spectrum aggregation process, noise reduces sen-
sitivity, thus increasing the noise floor, and lowers the quality
of the aggregated spectrum. furthermore, it is challenging
to discriminate between distinct frequency channels in a lo-
cal receiver due to phase noise. Phase noise can also lead to
signal degradation and distortion, making it difficult to have
a steady and reliable connection during spectrum aggrega-
tion. Therefore, reducing phase noise is essential to increase
the efficacy and efficiency of communication systems.
The wireless communication industry is currently adopting
technology that uses mmWave frequencies, thus making high-
er data speeds possible. To lower the bit error rate, faster data
rates require a higher signal-to-noise ratio. Therefore, the pro-
posed work implements an optimized deep learning semantic
spectrum localization approach to estimate the phase noise
in order to increase the quality of the aggregated spectrum.
By measuring and adjusting phase noise, the proposed deep
learning semantic spectrum localization technique facilitates
data transmission and reception in 4G LTE and 5G networks.
The rest of the article is structured as follows.
Section 2 offers a review of spectrum aggregation, noise
interference and spectrum sensing phenomena associated
with CR. Section 3 describes the proposed methodology. The
results are presented and discussed in Section 4. Conclusions
are given in Section 5.

2. Literature Review

Over the years, researchers have proposed many spectrum
aggregation techniques, including the multi-agent long-
and short-term (LSTM)-based deep Q-learning architecture
(DQN) as a solution to the distributed dynamic spectrum
access issue experienced in temporal correlations involving
primary and secondary users [7]. For the effective detection of
spectrum gaps, the author [8] employed a spectrum detection
algorithm based on spiking neural networks (SNN) trained
with the modified whale optimization algorithm (MWOA).
Another spectrum aggregation technique was employed in [9]
to detect unlicensed users to facilitate the efficient transmis-
sion of smart agriculture technologies. Using spectrum aggre-
gation technology, the maximum entropy actor-critic (MEAC)
algorithm was presented in [10], allowing secondary users
to share the spectrum. It was discovered, with the use of the
spectrum aggregation technology, that the MEAC algorithm
allowed secondary users to effectively share the spectrum re-
sources. The SNN-based spectrum sensing method trained on
MWOA has shown efficacy in identifying spectrum gaps, thus
enhancing spectrum accessibility for primary and secondary
users.
In the face of noise uncertainty, the authors of [11] detected
the unoccupied primary bands using the estimator-correlator-
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Fig. 1. Proposed architecture for spectrum aggregation in optimized
deep learning-based semantic segmentation network.

based optimum detectors and the generalized likelihood ratio
test (GLRT) paradigm.
To identify the principal user, paper [12] relied on a primary
key cryptosystem. The secondary user provided the error
correction key which was used to eliminate noise while
assigning resources to the secondary user. When sensing
the spectrum, Kendall’s tau detector finds the main signal
in the additive non-Gaussian noise that is described by the
contaminated Gaussian model (CGM).
In [13], the eigenvalue-based random matrix theory (RMT)
is used for multidimensional cognitive radio receivers to find
correlation noise caused by oversampling and filtration er-
rors. The bivariate isotropic symmetric α-stable (BISαS)
model presented in [14] was used by the author to identi-
fy non-Gaussian impulsive noise in spectrum detection. By
employing a radial basis function network, article [15] re-
solved the issue of an increased rate of misclassification in
the detection of spectrum, based on time series data.
In [16], a highly efficient spectral network is presented, em-
ploying the frequency division multiplexing technique de-
scribed in the physical layer, while in [17], three unique deep
learning models, including convolutional neural networks,
recurrent neural networks, and neural networks are employed
to determine the spectrum of the secondary user (SU). These
models were employed to detect the spectrum in a 5G network.
A large data set was used to train these models to precise-
ly determine spectrum occupancy. The results demonstrated
that deep learning models outperform conventional spectrum
sensing techniques, offering a much higher accuracy rate and
generating fewer errors.

3. Proposed Methodology

The proposed architecture of spectrum sensing in spectrum
aggregation using the semantic segmentation technique is
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Fig. 2. Block diagram of the proposed ResNet-50 and DeepLab V3 semantic segmentation spectrum network.

shown in Fig. 1. Spectrum sensing is performed in spectrum
sharing environments using an optimized deep learning model
of a cognitive radio network. 5G and 4G LTE signals are
generated with a sampling rate of 61.44 MHz, with an image
size of 256 by 256, with each frame lasting 10 ms.
The frequency of each signal is analyzed and segmented into
different classes, such as LTE, 5G, and phase noise signals
based on spectral characteristics, using an optimized deep
learning model. After semantic segmentation, the spectrum
signals are allocated to primary and secondary users based
on their requirements for the shared spectrum signal. This
allocation process ensures efficient utilization of the spectrum
resources, allowing primary users to have priority access, with
secondary users being allowed to access the remaining part
of the spectrum. Additionally, by detecting and decreasing
phase noise, the overall quality of the shared spectrum signal
is improved for both primary and secondary users.

3.1. Semantic Spectrum Segmentation

Semantic spectrum segmentation is a technique that is used
to identify the spectrum based on the high-level features of
the signal. Semantic spectrum segmentation in CR (SSS-CR)
employs dynamic spectrum access for underutilized spectrum
bands and enables context-aware spectrum usage. SSS in CR
improves spectrum sharing between primary and secondary
users while minimizing interference and optimizing spectrum
allocation.
The proposed work employs LTE and 5G NR interfaces that
detect the presence of phase noise using the deep learning
approach. The presence of phase noise is classified by the
semantic segmentation method and optimizes spectrum sens-
ing.

3.2. ResNet-50 Based Deep Semantic Segmentation
Network

Semantic segmentation (SS) is used to classify pixels that
belong to a particular class. SS is used to combine pixels of
the same class and supports multiclass segmentation. The

proposed work uses ResNet-50 as a backbone network with
DeepLab V3 to segment signals in cognitive radio, such as
5G, LTE and phase noise signals. ResNet-50 comprises 4
stages of layers, such as the initial stage, containing convolu-
tion, and the maximum pooling layer, followed by 3 sets of
residual blocks. Thanks to the convolutional module, the skip
connection feature and accurate pixel detection, ResNet-50 is
capable of obtaining information about pixels that are inside
a spectrogram signal. Therefore, the model is suitable for ex-
tracting such features as frequency content, frequency bands,
spectral density, time frequency location, and spectral peaks
from the spectrogram.
DeepLab V3 uses an arbitrary convolution network and a spa-
tial feature pyramid to acquire multiscale features without
adding more parameters to the proposed architecture. The
DeepLab V3 architecture uses an encoder and decoder. The
encoder encodes finer details of the spectrogram, while the de-
coder is used to obtain the desired resolution. In DeepLab V3,
dilation rates are used to capture multiscale features which
regulate the space between kernel weights and the receptive
field.
The training parameters for stochastic gradient descent with
a momentum algorithm is optimized using jellyfish, single
candidate, and sand cat optimizer algorithms to increase
the performance of the proposed ResNet-50 and DeepLab
V3 network. Optimization strategies improving speed and
accuracy are chosen as well.
Figure 2 shows the proposed architecture of the semantic
segmentation network.

3.3. Jellyfish Optimization

Jellyfish is a bio-inspired optimization algorithm implemented
based on the food search habits of jellyfish. The algorithm
finds the best location where the most food is available. While
the lookout for food, jellyfish are carried by the ocean current
or move in a swarm. We used the jellyfish optimization
algorithm to optimize the momentum training parameter
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Algorithm 1 Jellyfish-based semantic spectrum sensing

1: Initialize parameters and variables, number of popula-
tion, number of dimensions, lower and upper bound for
momentum, and maximum iteration

2: Initialize population using logistic map initialization
technique and set lower bound and upper bound to vectors

3: Evaluate the initial population using the cost function
4: Initialize the best solution BestSol and its corresponding

cost BestCost
5: for each iteration until the maximum iteration is reached

do
6: Calculate the mean of the current population Meanvl
7: Sort the population based on costs
8: for each solution in the population do
9: Calculate the time control factor Ar

10: if Ar  0.5 then
11: Update the solution by following the ocean

current method and update the new position
of jellyfish

12: else
13: Determine the type

of motion (active or passive)
14: end if
15: end for
16: end for
17: Output the optimal momentum value u and its corre-

sponding cost fval

based on the condition of a high mean accuracy value in deep
learning semantic spectrum segmentation.
The momentum training parameter is essential to enhance
the convergence speed and stability of deep learning models.
Using the jellyfish optimization algorithm, we can effectively
search for the optimal value of this parameter, leading to
enhanced performance in semantic spectrum segmentation
tasks. Algorithm 1 illustrates the pseudocode of jellyfish
optimization.

3.4. Single Candidate Optimization

The single candidate optimizer (SCO) supports the entire op-
timization process to find the best solution. The evaluation
process depends on the maximum number of function evalu-
ations or iterations involved. The process is divided into two
phases, and candidates update their positions in each phase.
The Algorithm 2 evaluates the cost function in semantic spec-
trum sensing to optimize the momentum training parameter
and updates the position of a candidate based on the current
mean accuracy value. Additionally, by dividing the optimiza-
tion into two phases, the algorithm can adapt and refine its
search strategy based on the results obtained in each phase.

3.5. Sand Cat Optimization

The sand cat swarm optimization method (SCSO) was im-
plemented based on the behavior of sand cats. The SCSO
algorithm simulates sand cats’ hunting techniques, allow-
ing them to successfully locate and capture prey. Using this

Algorithm 2 SCO-based semantic spectrum sensing

1: Initialize parameters: lower bound for momentum, up-
per bound for momentum, number of dimensions, cost
function for optimization, number of iterations

2: Initialize a random candidate solution within the specified
limits

3: Evaluate the best fitness of the initial candidate solution
BF using the cost function fobj

4: Set the initial values for counters and parameters
5: for each iteration t from 1 to T do
6: Calculate the inertia weight
7: Update counters and check if in the second phase
8: Generate a new candidate solution and determine

the motion strategy based on the current phase
9: if t < α then

10: Determine the motion strategy for the first phase
11: else
12: Determine the motion strategy for the second

phase
13: end if
14: Enforce boundary constraints on the new candidate

solution
15: Evaluate the fitness F (t) of the newly generated

candidate solution
16: if F (t) is better than the current best fitness then
17: Update the best solution and its fitness
18: end if
19: Store the BF for the current iteration t in BF(T )
20: end for
21: Output the optimal momentum value gbest and its cor-

responding cost BF(T )

LTE LTE+5G5G NR

Fig. 3. LTE and 5G NR generated signal samples.

behavior during the optimization process, the SCSO algo-
rithm performs better at detecting and tracking low-frequency
noises that could be food sources. As a result, modifying the
momentum training parameter with the SCSO technique is an
effective method to improve overall performance. Algorithm
3 shows the pseudocode of SCSO.

4. Results and Discussions
The data set for the simulation is generated for 5G and LTE
signals with added phase noise of the specified bandwidth.
More detailed data from case A relate to urban areas, and less
detailed data from case B to rural areas. Sub-carrier spacing
between 15 and 30 kHz and synchronization of a single block
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Algorithm 3 SCSO pseudocode

1: Initialize parameters: number of search agents
SearchAgents-no, maximum iterations max-iter,
lower bound and upper bound for each dimension,
number of dimensions, and cost function for optimization

2: Initialize the best score BS to positive infinity and the
best fitness BF to an array of zeros with length equal to
dim

3: Initialize the positions of search agents (positions)
using the initialization function

4: Initialize the convergence curve array to zeros with length
equal to max-iter

5: if number of values = 1 then
6: assign initial condition
7: else
8: set the iteration counter t to 0
9: end if

10: while t < max-iter do
11: for each search agent i from 1 to SearchAgents-no

do
12: Evaluate the fitness of the current position using

the cost function fobj
13: if the current fitness is better than BS then
14: update BS and BF
15: end if
16: end for
17: Update the maximum sensitivity range S and the

guide range rg
18: for each search agent i from 1 to SearchAgents-no

do
19: Generate a random value r between 0 and rg
20: Generate a random value R between −rg and rg
21: for each dimension j from 1 to dim do
22: Calculate the transition phase angle θ using

the RouletteWheelSelection function
23: if R satisfies the motion strategy condition

then
24: Select a random search agent cp

and update the position of dimension j
25: end if
26: end for
27: Enforce boundary constraints on the updated

position of dimension j
28: end for
29:
30: Increment the iteration counter t
31: Update the convergence curve array with the

current BS
32: end while
33: Output the best score BS, the best fitness BF, and the

convergence curve array (convergence-curve)

period of 40 ms are used as well. LTE signals are created
using R.2, R.6, R.8 and R.9 reference channels for downlink
transmissions in cities or in indoor environments, with low
or high interference levels and a frequency division duplex

Tab. 1. Parameters used for the generation of the signal data set.

Parameter Value Units

5G NR
Bandwidth 10, 15, 20, 25, 30, 40, 50 MHz

Subcarrier spacing 15, 30 kHz
SSB block pattern case A, case B

SSB period 20 ms
LTE

Reference channel R.2, R.6, R.8, R.9
Bandwidth 5, 10, 15, 20 MHz

Duplex mode FDD
Phase noise

SNR 0 40 dB
Carrier frequency 2.5 kHz
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Fig. 4. Accuracy of three considered optimizers.

(FDD). Table 1 shows the parameters used in the simulation,
whereas Fig. 3 shows the sample signals.

4.1. Training Parameters Based on Optimized Algorithms

Figure 4 shows the cost values of various spectrum sensing
optimization strategies, including jellyfish, single candidate
solution, and sand cat. According to the graph, the sand cat
algorithm outperforms other optimization strategies in terms
of accuracy, and with momentum of 0.9 because the algorithm
locates and forecasts accuracy even in low noise environments.
As a result, the algorithm classifies the semantic signal with
an excellent accuracy level of 98.3%.
Figure 5 shows the degree of precision of the three optimizers
under consideration, with respect to 5G, LTE, and phase
noise. One may conclude from the figure that the dominance
of phase noise is higher than 5G and LTE.
Figure 6 illustrates the sensitivity values of optimizers for 5G,
LTE, and phase noise cases, while Fig. 7 provides specific
values. One may observe from Fig. 6 that sensitivity to phase
noise is lower than in 5G and LTE, and Fig. 7 shows that the
sand cat optimizer exhibits faster convergence and greater
generalization capabilities, making it an excellent alternative
for semantic spectrum deep learning classification problems.
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These data also demonstrate that the sand cat optimizer
outperforms other methods across a wide range of assessment
measures.

4.2. Performance Analysis Using ResNet-50 and DeepLab
V3

To assess the decrease in the presence of phase noise, all con-
sidered optimization classifiers are trained with ResNet-50
and DeepLab V3 (Fig. 8). Figure 9a shows the performance
of the optimized ResNet-50 semantic spectrum sensing ap-
proach, in terms of global accuracy. It is evident that the
captured spectrum sensing for the proposed sand cat optimiz-
er is high when compared with other optimizers. Figure 9b
shows the mean captured spectrum sensing accuracy value,
with the sand cat optimizer producing a better result com-
pared with other optimizers. Figure 9c proves that the mean
spectrum sensing IOU of the sand cat optimizer is high versus
the remaining approaches. Fig. 9d shows that the weighted
spectrum sensing IOU of the sand cat optimizer is the high-
est. Figure 9e shows the ResNet-50 BF score that has the
highest captured spectrum detection value for the sand cat
optimizer, and Fig. 9f presents the F1 score that has a greater
captured spectrum detection value for the sand cat optimizer,
compared to the ResNet-50 optimizer.

In general, the performance analysis proves that the captured
spectrum sensing becomes higher when phase noise is de-
creased, which enhances the effective utilization of semantic
spectrum sensing – see Fig. 10 and Tab. 2.
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Tab. 2. Comparison of spectrum sensing methods.

Spectrum sensing Accuracy

ResNet 152 [18] 90.55%
SenseNet [19] 91.25%

DetectNet+SVM [20] 89%
1DCNN+BiLSTM+SA [21] 92%

VGG [22] 95%
Proposed ResNet-50 + DeepLab V3 99.7%

5. Conclusion

The proposed phase noise detection technique minimizes
interference, improves signal quality, enhances network ca-
pacity and augments spectral efficiency. Unfortunately, the
proposed model requires significant amounts of computing
power, is sensitive to parameter tuning, and the spectrum
characteristics may be subject to change depending on the
real-time environment. However, the model provides good
results in terms of phase detection and labelling. Therefore,
additional research and development work is required to op-
timize the model for practical deployment in dynamic and
unpredictable scenarios. Additionally, the efficacy in chang-
ing signal environments will require constant observation and
parameter modification.
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