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Abstract—The main advantage of a distributed computing

system over standalone computer is an ability to share the

workload between cores, processors and computers. In our

paper we present a hybrid cluster system – a novel comput-

ing architecture with multi-core CPUs working together with

many-core GPUs. It integrates two types of CPU, i.e., Intel

and AMD processor with advanced graphics processing units,

adequately, Nvidia Tesla and AMD FirePro (formerly ATI).

Our CPU/GPU cluster is dedicated to perform massive paral-

lel computations which is a common approach in cryptanalysis

and cryptography. The efficiency of parallel implementations

of selected data encryption and decryption algorithms are pre-

sented to illustrate the performance of our system.

Keywords—AES, computer clusters, cryptography, DES, GPU

computing, parallel calculation, software systems.

1. Introduction

Data encryption and decryption are generally complex

problems and involve cumbersome calculations, especially

when consider processing of large amounts of data. The

restrictions are caused by demands on computer resources,

i.e., processor and memory. However, in many cases the

calculations performed by cryptography algorithms can be

easily partitioned into large number of independent parts

and carried out on different cores, processors or comput-

ers. It was observed that parallel implementation based on

MapReduce programming model improves the efficiency of

the algorithm and speeds up a calculation process.

CPU and GPU clusters are one of the most progressive

branches in a field of parallel computing and data process-

ing nowadays, [1], [2]. A cluster is a set of computers work-

ing together so that in many aspects they can be viewed as

a single system. Typical cluster consists of homogenous

Central Processing Units (CPUs). A new model for paral-

lel computing based on using CPUs and GPUs (Graphics

Processing Units) together to perform a general purpose

scientific and engineering computing was developed in the

last years, and used to solve complex scientific and engi-

neering problems. Using CUDA or OpenCL programming

toolkits many real-world applications can be easily imple-

mented and run significantly faster than on multi-processor

or multi-core systems [3].

In this paper we describe and evaluate a hybrid cluster sys-

tem HGCC that integrates two types of multi-core CPUs,

i.e., Intel and AMD processors equipped, adequately, with

NVIDIA and AMD graphical units. We have designed and

developed a dedicated software framework for parallel ex-

ecution of computing tasks which aim is to hide a hetero-

geneity of the cluster – from the user’s perspective, the

cluster system serves as one server. The objective of this

software is to divide the data into separate domains, al-

locate the calculation processes to cluster nodes, manage

calculations and communication.

The remainder of this paper is organized as follows. We

present a brief survey of modern GPU clusters in Section 2.

The architecture of our cluster and software framework that

manages calculations are described in Section 3. Finally, in

Section 4 we briefly summarize results of tests for selected

types of data encryption and decryption algorithms. The

paper concludes in Section 5.

2. Survey of CPU and GPU Clusters

Every year in June and November the TOP500 list is pub-

lished. The announcement of the list is not only the chance

to find out what are the most powerful supercomputers

but also a great opportunity to observe new trends in the

HPC technologies. In June 2012, as compared to Novem-

ber 2011 list, when there was no turnover in the Top10,

this time around, there are six brand new machines, plus

one, Jaguar, that has benefitted from an upgrade to faster

processors. The majority of these new machines is built

using latest IBM solution called Blue Gene Q. Only one

of new supercomputers is equipped with GPU. However

it doesn’t mean that the interest in applying GPU technol-

ogy in supercomputers is falling down. Many of the most

powerful supercomputer centers are waiting for new accel-

erators from NVIDIA, AMD and Intel. For example a new

supercomputer Titan, which will be a successor of Jaguar

and is currently being built in Oak Ridge National Labo-

ratory, will be equipped with almost 15 000 of NVIDIA

cards from “Keppler” family.

When we look at the whole Top500 list we can observe

a rising significance of GPU accelerators. In June 2012

ranking, there are 58 machines that are equipped with GPU
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accelerators, up from 17 only one year ago – see Fig. 1. It

is worth noting that 53 of them use NVIDIA Tesla GPU co-

processors while only two of them are equipped with IBM’s

Cell coprocessors and other two with AMD’s Radeon cards.

Moreover, a new product of Intel utilizing Intel MIC accel-

erator had its debut on TOP500 in an experimental cluster

with pre-production Knights Corner chips. MIC chip will

be available in the end of 2012, as Intel Xeon Phi copro-

cessor.

Fig. 1. Number of systems from TOP500 utilizing accelerators.

The most common operating systems used for building

clusters are UNIX and Linux. Clusters should provide fol-

lowing features: scalability, transparency, reconfigurabil-

ity, availability, reliability and high performance. There are

many software tools for supporting cluster computing. In

the beginning of XXI century, the common idea was to

provide a view of one supercomputer for a cluster built

from a group of independent workstations. The SSI (Single

System Image) clusters were designed and developed. In

this approach all servers’ resources such as disks, memory,

processors are seen by a user as one unique machine. The

whole cluster is identified from outside by one IP address.

The popular systems that implement the idea of SSI are

Mosix (http://www.mosix.org) that does not cover all SSI

features, and two comprehensive clustering solutions of-

fering full SSI environments: OpenSSI (http://openssi.org)

and Kerrighed (http://www.kerrighed.org). A brief over-

view and comparative study of stability, performance and

efficiency of Mosix, OpenSSI and Kerrighed systems is

presented in literature [4].

Other commonly used systems that can be applied to

high performance data processing and calculations in clus-

ter systems are software frameworks that perform job

scheduling. Commonly used Portable Batch System PBS

(www.pbsworks.com) provides mechanisms for allocating

computational tasks to available computing resources. Var-

ious versions of the system are available, open source and

commercial: OpenPBS, MOAB with Torque, PBS Profes-

sional.

Most of the presented cluster systems are mature solutions.

However, they have some limitations. Mosix, OpenSSI and

Kerrighed systems focuss on load balancing. The idea is

to implement an efficient load balancing algorithm which

is triggered when loads of nodes are not balanced or lo-

cal resources are limited. In general, processes are moved

from higher to less loaded nodes. Unfortunately, migration

of processes involves extra time for load calculation and

overhead in communication. Moreover, Mosix, OpenSSI,

Kerrighed systems were designed for CPU clusters.

Currently, users are provided with software environments

that allow to perform calculations on a single GPU

device. There are only a few software tools for run-

ning applications on GPU clusters. Virtual OpenCL VCL

(www.mosix.org/txt vcl.html) is a software platform for

GPU clusters. It can run unmodified OpenCL applications

on Linux clusters with or without the Mosix system. VCL

provides a view of one superserver for cluster built from

a group of GPU units. The components of VCL, its per-

formance and applications are presented in [5].

Our goal was to develop a software framework that allows

unmodified OpenCL applications to transparently and con-

currently run on multiple CPU and GPU devices in a clus-

ter. In case of our application we need a simple function-

ality, i.e., a calculation speed up, resistance and ease of

use. We perform static decomposition of the problem in

calculation startup, hence the dynamic load balancing is

superfluous. Our software framework is quite similar to

VCL platform [5], however, in our solution it is possible to

utilize both CPUs and GPUs on computational nodes.

3. HGCC System Overview

3.1. Hardware Components of HGCC

The aim of our work on utilizing a cluster composed of

CPUs and GPUs in cryptography and complex data analy-

sis is providing the system which functionality allow us to

perform: effective computing of applications implement-

ing MapReduce programming model, comparison of per-

formance of CPUs and GPUs from many vendors along

with comparison of different interconnects performance.

We have built a heterogenous cluster system with multi-

core CPUs working together with many-core GPUs. The

system consists of 24 nodes and integrates two types of

CPUs: 12 servers with two Intel Xeon processors each

and 12 servers with two AMD Opteron processors each.

All servers are equipped with advanced GPUs, adequately,

NVIDIA Tesla and AMD FirePro units. It is worth to note

that FirePro V7800 has a peak performance in the sin-

gle precision almost two times better than NVIDIA Tesla

M2050, and a peak performance in the double precision

equal 0.8 of Tesla’s performance. Moreover, AMD GPU

is approximately four times cheaper than NVIDIA GPU.

However, effective programming of GPU based on Very

Long Instruction Word (VLIW5) architecture – AMD Fire-

Pro V7800 – is not a simple task and not every application

is capable to achieve performance close to the peak one.

33



Ewa Niewiadomska-Szynkiewicz, Michał Marks, Jarosław Jantura, and Mikołaj Podbielski

Fig. 2. Hybrid system architecture with Intel+NVIDIA and

AMD+ATI/AMD nodes.

The system architecture is depicted in Fig. 2. The spec-

ification of components that form the HGCC cluster is as

follows:

CPU Intel : Intel Xeon X5650, 2.66 GHz/3.06 GHz turbo,

6 cores / 12 threads, 6x256 L2, 12 MB L3 cache.

CPU AMD : AMD Opteron 6172, 2.1 GHz, 12 cores /

12 threads, 12x512 KB L2, 12MB L3 cache.

GPU NVIDIA : NVIDIA Tesla M2050, 448 CUDA cores,

384-bit memory bus.

GPU AMD : AMD FirePro V7800, 1440 stream proces-

sors (equivalent of 288 CUDA cores), 256-bit mem-

ory bus.

The computing nodes are supported by a dedicated master

and storage nodes providing access to disk arrays and man-

agement capabilities. Communication between nodes is or-

ganized using different interconnects: InfiniBand 4x QDR,

10GbE and 1GbE. Such redundant network configuration

allows us to verify the impact of selected interconnects on

computation efficiency. Moreover, it is possible to sep-

arate communication connected with IO operations from

computational traffic. The current configuration assumes

utilizing InfiniBand network for providing access to data

storage. 10GbE Ethernet and the 1GbE Ethernet are used

for computational purposes.

3.2. HGCC Software Framework

The HGCC software framework provides an environment

for parallel calculations that are performed on a cluster

formed by heterogenous CPU and GPU devices. The goal

was to hide a heterogeneity of the cluster and minimize

the user’s effort during the design, implementation and

execution of the application. From a user’s perspective,

the cluster system should serve as one server. So, it allows

a user to focus only on the numerical part of his applica-

tion. The concept was to allow applications developed by

users to transparently utilize many CPU and GPU devices,

as if all the devices were on the local computer. A single

system image model is implemented – all servers’ resources

such as CPU, GPU or memory are seen by the user as one

unique machine. Therefore, applications written for HGCC

benefit from the reduced programming complexity of a sin-

gle computer, the availability of shared memory and multi

threads, as in OpenMP (http://openmp.org/wp), and a con-

current access to cluster nodes and their devices, as in MPI

(http://mpi-forum.org).

In order to take advantage of GPU accelerators from dif-

ferent vendors, we decided to use OpenCL, which is a low

level GPU programming toolkit, where developers write

GPU kernels entirely by themselves with no automatic code

generation [6]. OpenCL is an industry standard computing

library developed in 2009 that targets not only GPUs, but

also CPUs and potentially other types of accelerator hard-

ware. In OpenCL, an efficient implementation requires

preparation slightly different codes for different devices,

however, it is much less complicated than writing code in

many native toolkits for NVIDIA and AMD devices.

The facilities of the HGCC system are provided in the

form of four groups of services. These are: user interface,

calculation management, communication services and data

repository services. User interface services provide a con-

sistent user interface supporting the process of defining

an application, processing of the calculation results and

providing communication with the user. Calculation man-

agement services allocate the calculation processes into

cluster nodes and manage execution of the user’s appli-

cation. Communication services manage communications

between running processes and system kernel, and finally

data repository services provide a store for all data objects.

HGCC Architecture. The cluster framework consists of

several components presented in Fig. 3. The most important

are: MasterApp – master node application, the main com-

ponent that is responsible for the user-system communica-

tion and calculation management and SlaveApp – the com-

putational node application, the component that is respon-

sible for calculations that are performed by the assigned

server. Each computational node contains some number

of resources. In our framework we distinguish and collect

information about two types of such resources: CPUs –

central processing units and GPUs – graphics processing

units. The computational resource can be in one of the

following states: waiting – ready for loading a new task

to execution, working – occupied, calculations are executed

and lost – lost because of the node failure.

Inter-process Communication. The system implements

the master-slave communication scheme. An XML-based

communication protocol based on the TCP/IP protocol and

BSD sockets is used to perform communication between
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master and slave nodes. Our goal was to develop a simple,

flexible and failure resistance mechanism.

HGCC System Operation. A user implements the com-

putational task in an object oriented way and defines his

problem in the task descriptor. The XML Schema spec-

ification for building XML files with task description is

provided in HGCC. The task descriptor contains: a type of

the task, an algorithm, a destination platform and device.

All these parameters are mandatory. The rest of this file

is filled by parameters specific to a given task. The cluster

framework can handle any computational task which was

implemented by the user. A committed task is sent to the

MasterApp component. All parameters defined in the task

descriptor are parsed inside MasterApp. Next, the task is

divided into smaller subtasks. MasterApp creates the list of

such subtasks. They are allocated to the slave nodes, which

contain any free resources. Two operations are performed

after SlaveApp initialization: a plugin list is loaded from

a plugin descriptor file, and a socket is opened and wait for

MasteApp’s connection. The plugin descriptor file contains

information about all plugins currently available in the sys-

tem. Whenever a slave node gets a new set of subtasks to

execute it looks for available valid plugin, and loads it to

the memory. Next, the control flow inside SlaveApp splits,

and the newly spawned thread launches calculations stored

in the loaded plugin.

4. Case Study Results: Parallel

Cryptography

Cryptanalysis and cryptography techniques are natural can-

didates for massively parallel computations. The algo-

rithms for encryption and decryption of large amounts of

data can be easily decomposed and executed in parallel.

The popular schemes using symmetric ciphers were found

to give a significant speed up when ported to GPU, espe-

cially such schemes like Data Encryption Standard (DES),

Advanced Encryption Standard (AES) [7]–[10] or Blow-

Fish [11]–[13]. GPU-based implementations of algorithms

using asymmetric ciphers (RSA, ECC, NTRU and GGH)

are described in the following papers [14]–[18]. In this

paper we present the evaluation of the performance of our

HGCC-based implementations of symmetric DES and AES

cryptography algorithms.

4.1. DES and AES Implementations in HGCC

The HGCC cluster is the general purpose hardware and

software system that can be used to solve any complex com-

puting problems that require a processing of large amounts

of data (see [19], [20]). In our research, which results are

presented in this paper we used HGCC to efficient crypt-

analysis and cryptography. The evaluation of selected tech-

niques of cryptanalysis, i.e., the password recovery from

hashes are described in [21]. In this paper we focus on

effective cryptography working on CPU and GPU units.

The numerical results of extensive tests of our implemen-

tations of DES and AES algorithms are presented and

discussed.

Fig. 3. Core components of the cluster framework.

We performed four series of experiments. The aim of

the first series was to test the efficiency of parallel im-

plementations of the DES and AES algorithms on the

cluster formed only by the CPU units. Various modes

of the algorithms operation were compared. The current

modes of operation listed in Table 1 are specified in

http://csrc.nist.gov/index.html and in [22]. The simplest of

the encryption modes is the electronic codebook (ECB)

mode. The message is divided into blocks and each block

is encrypted separately. In CBC (cipher-block chaining)

mode, each block of plain text is XORed with the previ-

ous cipher text block before being encrypted. This way,

each cipher text block depends on all plain text blocks pro-

cessed up to that point. The PCBC (propagating cipher-

block chaining) mode was developed to cause small changes

in the ciphertext to propagate indefinitely both when de-

crypting and encrypting. The CFB (cipher feedback) mode

that is relative to CBC makes a block cipher into a self-

synchronizing stream cipher. The OFB (output feedback)

mode makes a block cipher into a synchronous stream ci-

pher. The CTR (counter) mode has similar characteristics

to OFB, but also allows a random access property during

decryption. It should be pointed that several of listed modes

are suited to parallel implementation (see Table 1).

Table 1

Modes of operations of symmetric ciphers

Mode Parallel encryption Parallel decryption

ECB Yes Yes

CBC No Yes

PCBC No No

CFB No Yes

OFB No No

CTR Yes Yes

Table 2 and Fig. 4 demonstrate the performance of

the single thread CPU-based implementations of the block

ciphers: DES, 3DES and AES. The table collects the
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Fig. 4. Block ciphers performance on CPU (1 thread).

Fig. 5. Block ciphers performance on GPU.

amounts of data in MiB/s (MiB/s = 1,048,576 bytes/s)

that were encrypted/decrypted per second in case of

all tested algorithms. The efficiency of our implemen-

tations of DES and AES (NASK) were compared with

the results presented in the Internet: GNU Privacy Guard

GnuPG 1.4.11 (http://www.gnupg.org/download/) and free

open-source disk encryption software TrueCrypt 7.0a

(http://www.truecrypt.org/).

Table 2

Block ciphers performance on CPU (1 thread) in MiB/s

Algorithm
Implementation

NASK GnuPG 1.4.11 TrueCrypt 7.0a

DES 63.82 60.01 67.95

3DES 23.10 25.48

AES(encrypt) 123.70 107.50 110.60

AES(decrypt) 131.80 110.80 130.70

The presented results show that the efficiency of our im-

plementations of DES and AES on CPU is similar to the

results provided by other projects. It is worth to men-

tion that both GnuPG and TrueCrypt are widely used

products of teams that have extensive experience in cryp-

tography.

The aim of the second series of experiments was to com-

pare the efficiency of the DES and AES implementations

on different GPUs provided by various vendors. The cal-

culations were carried out on three types of GPU units:

AMD FirePro V7800, NVIDIA Tesla M2050 and AMD

Radeon 6970. Table 3 and Fig. 5 present the amounts of

data in MiB/s that were encrypted/decrypted per second in

case of all tested algorithms and decryption and encryption

operations.

Table 3

Block ciphers performance on GPU in MiB/s

Graphics Processing Unit

Algorithm AMD FirePro NVIDIA AMD Radeon
V7800 Tesla M2050 6970

DES 660.73 1038.02 1295.60

3DES 658.11 837.67 1031.73

AES(encrypt) 1135.96 1316.82 1901.25

AES(decrypt) 1129.54 1329.62 1963.91

In general, the GPU-based implementations of all algo-

rithms were much more efficient than implementations

working only on the CPU unit. The best results were ob-

tained for the Radeon 6970 graphics processing unit.

The aim of the next series of experiments was to com-

pare the performance of two implementations of the AES

algorithm. The original AES implementation was com-

pared with implementation utilizing an Advanced Encryp-

tion Standard – New Instruction Set (AES-NI) extension.

New Instruction Set is an extension to the x86 instruc-
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Fig. 6. Performance of the AES algorithm implementations with/without AES-NI extension; CPU and GPU.

tion set architecture for microprocessors from Intel and

AMD (http://ark.intel.com/). The purpose of this instruc-

tion set is to improve the speed of applications perform-

ing encryption and decryption using AES, which is an in-

dustrial standard nowadays. In our cluster only Intel Xeon

X5650 Westmere processors provides AES-NI extension.

Unfortunately none of our processors provides support for

Advanced Vector Extensions (AVX), so we were not able

to assess impact of AVX instruction set on AES perfor-

mance. Table 4 and Fig. 6 demonstrate the performance

of AES executed on three types of GPU and two types of

CPU units. We can see that the application of the new

instruction set causes massive acceleration of the AES al-

gorithm.

Table 4

Performance of the AES algorithm implementations

with/without AES-NI extension; CPU and GPU

Processing Unit
AES-NI Encryption Decryption

extension [MiB/s] [MiB/s]

AMD FirePro V7800 no 1135.96 1129.54

NVIDIA Tesla M2050 no 1316.82 1329.62

AMD Radeon 6970 no 1901.25 1963.91

2xOpteron – 24 threads no 1272.00 1394.40

2xXeon – 12 threads no 1546.80 1533.60

2xXeon – 12 threads yes 14848.80 14841.60

Table 5

Scalability of the AES algorithm

Processor
Speedup

1 node 2 nodes 4 nodes

Xeon X5650 1 1.95 3.71

Opteron 6172 1 1.93 3.73

The aim of the last series of experiments was to present

the efficiency of our cluster system. In this paper we

present the evaluation of the AES implementation in two

subclusters: the first formed by four Opteron processing

units and the second one formed by four Xeon processing

units. As it can be seen in Table 5 the AES algorithm

scales up very well – the speed up value for four nodes is

between 3.71 and 3.73.

5. Summary and Conclusion

The paper provides a short overview of the components of

our heterogenous cluster system integrating CPU and GPU

devices from various vendors. We described the hardware

architecture and the software framework that form our clus-

ter. The cluster system was designed to be powerful, effec-

tive, scalable, flexible, and easy to use. It is especially use-

ful in complex calculations and parallel processing of large

volumes of data in which a speed of calculation and data

decomposition are of essence. Cryptography algorithms

are natural candidates for massively parallel computations

in GPU/CPU clusters. Our experimental results presented

in this paper demonstrate the effectiveness and scalability

of the HGCC cluster system, and confirm that the direc-

tion to speed up cryptography techniques is to port them

to GPU units. As a final observation we can say that het-

erogeneous computing systems offer a new opportunity to

increase the performance of parallel HPC applications on

clusters, by combining traditional CPU and general purpose

GPU devices.
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